
Mezzanine

2014 02 11

Contents

1 Table Of Contents 31.1 Overview . 31.2 Content Architecture . 131.3 Model Customization . 201.4 Admin Customization . 221.5 Utilities . 251.6 Model Graph . 301.7 Device Handling . 301.8 In-line Editing . 311.9 Caching Strategy . 331.10 Deployment . 351.11 Frequently Asked Questions . 371.12 Public User Accounts . 421.13 Search Engine . 431.14 Configuration . 461.15 Importing External Blogs . 611.16 Packages . 631.17 Colophon . 65

i

ii

Mezzanine,

Welcome to the Mezzanine project. To learn more about Mezzanine please read the which contains a feature list,
installation guide and other general information. To get an idea of the types of sites possible with Mezzanine, have a
look at the.

: A working knowledge of is required to work with Mezzanine and the documentation assumes as much. If
you’re new to Django, you’ll need to work through the before being able to understand the concepts
used throughout the Mezzanine documentation. A mantra for working with Mezzanine: Mezzanine Is Just Django -Ken Bolton, long-time Mezzanine contributor.

Front-end developers can read about how to set up templates for specific Device Handling such as phones and tablets.
Mezzanine also comes with the ability for content authors to edit content directly within a page while viewing it on
the website. You can read about this and how to implement this feature within templates under In-line Editing.

Back-end developers can get a better technical overview of how content is managed and how to customize Mezzanine
in general by reading about Mezzanine’s Content Architecture which describes the main components and how to extend
them with your own custom content types, or by reading about Model Customizationfor implementing more low-level
customizations as required. There is also a section on the Admin Customizationprovided by Mezzanine, as well as a
Model Graph depicting the relationships between all the models.

System administrators can find out about some of the production requirements and operations in the Deployment and
Caching Strategy sections.

Further reading includes Frequently Asked Questions, Utilities, a section on Public User Accounts, information
about Mezzanine’s Search Engine, and a section on Mezzanine’s Configuration which outlines the various settings
for configuring Mezzanine. Lastly, you can learn about Importing External Blogs into Mezzanine, or just browse the
auto-generated docs for each of Mezzanine’s Packages .

Contents 1

http://mezzanine.jupo.org/sites/
https://www.djangoproject.com/
https://docs.djangoproject.com/en/dev/intro/tutorial01/
http://bscientific.org/

Mezzanine,

2 Contents

Chapter 1

Table Of Contents

Created by

1.1

Mezzanine is a powerful, consistent, and flexible content management platform. Built using the framework,
Mezzanine provides a simple yet highly extensible architecture that encourages diving in and hacking on the code.
Mezzanine is and supported by a diverse and active community.

In some ways, Mezzanine resembles tools such as that provide an intuitive interface for managing pages,
blog posts, form data, store products, and other types of content. But Mezzanine is also different. Unlike many other
platforms that make extensive use of modules or reusable applications, Mezzanine provides most of its functionality
by default. This approach yields a more integrated and efficient platform.

Visit the to see some of the.

1.1.1

In addition to the usual features provided by Django such as MVC architecture, ORM, templating, caching and an
automatic admin interface, Mezzanine provides the following:

• Hierarchical page navigation

• Save as draft and preview on site

• Scheduled publishing

• Drag-and-drop page ordering

• WYSIWYG editing

•

• Drag-and-drop HTML5 forms builder with CSV export

• SEO friendly URLs and meta data

• Shopping cart module ()

• Configurable widgets

• Blog engine

3

http://travis-ci.org/#!/stephenmcd/mezzanine
http://twitter.com/stephen_mcd
http://djangoproject.com/
http://www.linfo.org/bsdlicense.html
http://wordpress.org/
http://mezzanine.jupo.org
http://mezzanine.jupo.org/sites/
http://mezzanine.jupo.org/docs/inline-editing.html
http://cartridge.jupo.org/
http://mezzanine.jupo.org/docs/admin-customization.html#dashboard

Mezzanine,

• Tagging

•

• User accounts and profiles with email verification

• Translated to over 35 languages

• Sharing via Facebook or Twitter

• per page or blog post

• integration

• API for

•

• Seamless integration with third-party Django apps

• Multi-device detection and template handling

• One step migration from other blogging engines

• Automated production provisioning and deployments

• integration, or built-in threaded comments

• integration

• integration

• feed integration

• integration

• spam filtering

• Built-in

• compatible (via)

The Mezzanine admin dashboard:

1.1.2

Mezzanine makes use of as few libraries as possible (apart from a standard Django environment), with the following
dependencies:

• 2.6 / 2.7 / 3.3

• 1.4 / 1.5 / 1.6

• - for image resizing

• - admin skin (fork)

• - for managing file uploads (fork)

• - for sanitizing markup in content

• and - for timezone support

• - for database migrations (optional)

• - for merging JS/CSS assets (optional)

• and - for interacting with external APIs

4 Chapter 1. Table Of Contents

http://mezzathe.me/
http://mezzanine.jupo.org/docs/content-architecture.html#page-templates
http://getbootstrap.com/
http://mezzanine.jupo.org/docs/content-architecture.html#creating-custom-content-types
http://mezzanine.jupo.org/docs/search-engine.html
http://disqus.com/
http://gravatar.com/
http://www.google.com/analytics/
http://twitter.com/
http://bit.ly/
http://akismet.com/
http://mezzanine.jupo.org/docs/packages.html#module-mezzanine.core.tests
http://en.wikipedia.org/wiki/Java_virtual_machine
http://www.jython.org/
http://python.org/
http://djangoproject.com/
http://www.pythonware.com/products/pil/
http://github.com/stephenmcd/grappelli-safe
http://code.google.com/p/django-grappelli/
http://github.com/stephenmcd/filebrowser-safe/
http://code.google.com/p/django-filebrowser/
http://pypi.python.org/pypi/bleach
http://pypi.python.org/pypi/pytz/
http://pypi.python.org/pypi/tzlocal/
http://south.aeracode.org/
https://pypi.python.org/pypi/django_compressor
http://docs.python-requests.org/en/latest/
https://github.com/maraujop/requests-oauth

Mezzanine,

• and - for running the test suite (optional)

1.1.3

Mezzanine’s admin interface works with all modern browsers. Internet Explorer 7 and earlier are generally unsup-
ported.

1.1.4

The easiest method is to install directly from pypi using by running the command below, which will also install
the required dependencies mentioned above:

$ pip install mezzanine

If you prefer, you can download Mezzanine and install it directly from source:

$ python setup.py install

Once installed, the command mezzanine-project can be used to create a new Mezzanine project in similar
fashion to django-admin.py:

$ mezzanine-project project_name
$ cd project_name
$ python manage.py createdb --noinput
$ python manage.py runserver

: The createdb command is a shortcut for using Django’s syncdb command and setting the initial migration
state for. You can alternatively use syncdb and migrate if preferred. South is automatically added to
INSTALLED_APPS if the USE_SOUTH setting is set to True.

createdb will also install some demo content, such as a contact form and image gallery. If you’d like to omit this
step, use the --nodata option with createdb.

You should then be able to browse to and log in using the default account (username:
admin, password: default). If you’d like to specify a different username and password during set up,
simply exclude the --noinput option included above when running createdb.

For information on how to add Mezzanine to an existing Django project, see the FAQ section of the documentation.

1.1.5

Mezzanine is an open source project managed using both the Git and Mercurial version control systems. These
repositories are hosted on both and respectively, so contributing is as easy as forking the project on
either of these sites and committing back your enhancements.

Please note the following guidelines for contributing:

• Contributed code must be written in the existing style. This is as simple as following the
and (most importantly).

• Contributions must be available on a separately named branch based on the latest version of the main branch.

• Run the tests before committing your changes. If your changes cause the tests to break, they won’t be accepted.

• If you are adding new functionality, you must include basic tests and documentation.

1.1. 5

http://pypi.python.org/pypi/pyflakes
http://pypi.python.org/pypi/pep8
http://www.pip-installer.org/
http://south.aeracode.org/
http://127.0.0.1:8000/admin/
http://github.com/stephenmcd/mezzanine/
http://bitbucket.org/stephenmcd/mezzanine/
http://docs.djangoproject.com/en/dev/internals/contributing/#coding-style
http://www.python.org/dev/peps/pep-0008/

Mezzanine,

If you want to do development with mezzanine, here’s a quick way to set up a development environment and run the
unit tests, using to set up a virtualenv:

$ mkvirtualenv mezzanine
$ workon mezzanine
$ pip install Django pep8 pyflakes
$ git clone https://github.com/stephenmcd/mezzanine/
$ cd mezzanine
$ python setup.py develop
$ cp mezzanine/project_template/local_settings.py.template mezzanine/project_template/local_settings.py
$./mezzanine/project_template/manage.py test

1.1.6

Mezzanine makes full use of translation strings, which allow Mezzanine to be translated into multiple languages
using methodology. Translations are managed on the website but can also
be submitted via or. Consult the documentation for methodology for
more information on creating translations and using them.

1.1.7

The following modules have been developed outside of Mezzanine. If you have developed a module to integrate with
Mezzanine and would like to list it here, send an email to the mailing list. You can also add modules
to the.

• - ecommerce for Mezzanine.

• - A / clone powered by Mezzanine.

• - Integrates the into Mezzanine.

• - Adds support to Mezzanine’s rich text editor.

• - Setup for running Mezzanine on cloud platform.

• - Setup for running Mezzanine on cloud platform.

• - A Mezzanine flavored fork of django-flatblocks.

• - Widget system for Mezzanine.

• - A collection of Django/Mezzanine templates.

• - Manage multiple Twitter topic feeds from the Mezzanine admin interface.

• - Adds CAPTCHA field types to Mezzanine’s forms builder app.

• - A multi-user bookmark app for Mezzanine.

• - Events plugin for Mezzanine, with geocoding via Google Maps, iCalendar files, webcal
URLs and directions via Google Calendar/Maps.

• - Polls application for Mezzanine.

• - Adds the WYSIWYG editor to Mezzanine.

• - Job posting application for Mezzanine.

• - Recipes plugin with built-in REST API.

• - Responsive banner slides app for Mezzanine.

6 Chapter 1. Table Of Contents

http://www.doughellmann.com/projects/virtualenvwrapper
https://docs.djangoproject.com/en/dev/topics/i18n/translation/
https://www.transifex.net/projects/p/mezzanine/
http://github.com/stephenmcd/mezzanine/
http://bitbucket.org/stephenmcd/mezzanine/
https://docs.djangoproject.com/en/dev/topics/i18n/translation/
http://groups.google.com/group/mezzanine-users/topics
http://www.djangopackages.com/grids/g/mezzanine/
http://cartridge.jupo.org/
https://github.com/stephenmcd/drum
https://news.ycombinator.com
http://www.reddit.com
https://github.com/tvon/mezzanine-html5boilerplate
http://html5boilerplate.com/
https://bitbucket.org/onelson/mezzanine-mdown
http://en.wikipedia.org/wiki/Markdown
https://github.com/overshard/mezzanine-openshift
https://openshift.redhat.com/
https://github.com/Stackato-Apps/mezzanine
http://www.activestate.com/stackato
https://github.com/renyi/mezzanine-blocks
https://github.com/osiloke/mezzanine_widgets
https://github.com/renyi/mezzanine-themes
https://github.com/lockhart/mezzanine-twittertopic
https://github.com/mjtorn/mezzanine-captcha
https://github.com/adieu/mezzanine-bookmarks
https://github.com/stbarnabas/mezzanine-events
https://github.com/sebasmagri/mezzanine_polls
https://bitbucket.org/akhayyat/mezzanine-pagedown
https://code.google.com/p/pagedown/
https://github.com/mogga/mezzanine-careers
https://github.com/tjetzinger/mezzanine-recipes
https://github.com/overshard/mezzanine-slides

Mezzanine,

• - Another app for adding blocks/modules to Mezzanine.

• - Allows designers to manage content areas in templates.

• - A simple Instagram app for Mezzanine.

• - Wiki app for Mezzanine.

• - Calendar pages in Mezzanine

• - Simple Facebook integration for Mezzanine.

• - Create Mezzanine galleries using Instagram images.

• - Command-line interface for Mezzanine.

• - Integrates Mezzanine’s Link pages with its blog categories.

• - A simple podcast streamer and manager for Mezzanine.

• - Collect links. Feature them. Share them over RSS.

• - Generate invoices with Mezzanine.

• - theme for Mezzanine.

• - Simple file collection page type for Mezzanine.

• - adapted as the rich text editor for Mezzanine.

• - Adds support for, and more, to Mezzanine’s rich text editing.

• - Add background and banner images per page in Mezzanine.

• - Restrict access to pages by group membership.

• - A Mezzanine module for add group-level permission to pages.

• - Widget-oriented content editing. Includes an adapter for Mezzanine and a powerful form builder.

• - Export your Mezzanine database and assets directly from the admin.

• - Integrate Mezzanine forms with a MailChimp subscription list.

1.1.8

If you would like to make a donation to continue development of Mezzanine, you can do so via the
website.

1.1.9

To report a security issue, please send an email privately to. This gives us a chance to fix the issue
and create an official release prior to the issue being made public.

For general questions or comments, please join the mailing list. To report a bug or other type of issue,
please use the. And feel free to drop by the #mezzanine IRC channel on, for a chat.

Communications in all Mezzanine spaces are expected to conform to the.

1.1. 7

https://github.com/jardaroh/mezzyblocks
https://github.com/mrmagooey/mezzanine-flexipage
https://github.com/shurik/Mezzanine_Instagram
https://github.com/dfalk/mezzanine-wiki
https://github.com/shurik/mezzanine.calendar
https://github.com/shurik/Mezzanine_Facebook
https://github.com/georgeyk/mezzanine-instagram-gallery
https://github.com/adieu/mezzanine-cli
https://github.com/mjtorn/mezzanine-categorylink
https://github.com/carpie/mezzanine-podcast
https://github.com/mjtorn/mezzanine-linkcollection
https://github.com/ambientsound/cash-generator
http://www.gnucash.org/
https://github.com/zgohr/mezzanine-foundation
http://foundation.zurb.com/
https://github.com/thibault/mezzanine-file-collections
https://github.com/excieve/mezzanine-wymeditor
http://wymeditor.github.io/wymeditor/
https://github.com/abakan/mezzanine-meze
http://docutils.sourceforge.net/rst.html
http://pygments.org/
https://github.com/bcs-de/mezzanine-pageimages
https://github.com/evilchili/mezzanine-protected-pages
https://github.com/simodalla/mezzanine_page_auth
http://django-widgy.readthedocs.org/en/latest/
https://bitbucket.org/joshcartme/mezzanine-admin-backup
https://bitbucket.org/naritasltda/mezzanine-mailchimp
http://mezzanine.jupo.org
mailto:security@jupo.org?subject=Mezzanine+Security+Issue
http://groups.google.com/group/mezzanine-users/topics
http://github.com/stephenmcd/mezzanine/issues
http://freenode.net
https://www.djangoproject.com/conduct/

Mezzanine,

1.1.10

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

8 Chapter 1. Table Of Contents

http://citrus.com.au/
http://mezzanine.jupo.org
http://hagianis.com
http://tomfmason.net
http://wembley-mosque.co.uk
http://ocrf.com.au/
http://thesource.com.au/
http://imageinary.com
http://blog.bradmontgomery.net
http://www.senexcanis.com
http://alphaomegacontractors.com
http://equityadvance.com.au/
http://head3.com
http://www.pyladies.com
http://www.ripematernity.com/
http://shop.cottonon.com/
http://www.listgbarristers.com.au
http://www.tricitiesflowerfarm.com
http://daon.ru/
http://autoindeks.ru/
http://immiau.ru/
http://www.araconsultants.com.au/
http://boiteazimages.com/
http://www.melbournecup.com/
http://www.diablo-news.com
http://www.goldmantravel.com.au/
http://ijcdigital.com/
http://store.coopers.com.au/
http://joejulian.name
http://sheerethic.com/
http://saltlakemagazine.com/
http://bocamag.com/
http://www.photog.me
http://www.elephantjuicesoup.com
http://www.nationalpositions.co.uk/

Mezzanine,

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.1. 9

http://www.likehumansdo.com
http://connectingcountries.net
http://tindie.com
http://ewp-sa.com/
http://rosslaird.com
http://etienneroes.ch
http://recruiterbox.com/
http://modprods.com/
http://appsembler.com/
http://www.pinktwig.ca
http://parfumeplanet.com
http://www.trading4.us
http://chrisfleisch.com
http://theneum.com/
http://www.mystorychest.com
http://www.fatrix.ch
http://www.codearchaeologist.org
http://nashpp.com
http://acinetobacter.bham.ac.uk
http://www.matthewahn.com
http://bitofpixels.com
http://ecm29.ecanews.org
http://dreamperium.com
http://utdallasiia.com
http://goyamamusic.com
http://www.yetihq.com/
http://idhoc.com
http://pageworthy.com
http://princejets.com
http://1inday.com
http://www.sbtc.org.au/
http://helios3d.nl/
http://lifeisgoodforall.co.uk/
http://bldg92.org/
http://piemonster.me
http://asia.cottonon.com/

Mezzanine,

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

10 Chapter 1. Table Of Contents

http://www.adieu.me
http://www.wearetopsecret.com/
http://www.jaybirdgear.com/
https://manai.co.uk
http://www.sriemas.edu.my
http://perunspace.ru
http://tacticalbags.ru
http://apps.de
http://sunfluence.com
http://ggzpreventie.nl
http://www.dakuaiba.com
http://www.wdiaz.org
http://huntedhive.com/
http://mjollnir.org
http://www.beancatnet.org
http://raquelmaron.com/
http://eatlove.com.au/
http://hospitalityq.com/
http://theandrewstory.com/
http://charleskoll.com/
http://homewithmission.com/
http://www.creuna.com/
http://www.cosasandiego.com/
http://www.sitecomb.com
http://dashing.tv/
http://puraforceremedies.com/
http://www.vetnethq.com/
http://www.1800respect.org.au/
http://evenhouseconsulting.com/
http://humboldtccs.org
http://gradyhistory.com
http://shipgistix.com
http://www.yuberactive.asia
http://pogromcymitowmedycznych.pl
http://4playernetwork.com/
http://top500.org

Mezzanine,

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.1. 11

http://www.zeichnemit.de
http://uvena.de
http://ezless.com
http://python.do
http://stackful.io/
http://www.adrln.com/
http://aceedventure.com/
http://www.butchershopcreative.com/
http://www.sjkingston.com
http://mises.fi
http://incendio.no/
http://lillevikdesign.no/
http://www.turitromso.no
http://www.mandriva.com/
http://crownpreschool.com
http://coronadopathways.com
http://www.raindropads.com
http://www.web4py.com
http://thepeculiarstore.com
http://www.grindin.ru
http://www.4gume.com
http://skydivo.com
http://noshly.com
http://kabucreative.com.au/
http://www.kisanhub.com/
http://yoursongyourstory.org/
http://kegbot.org
http://fiz.com/
http://willbornco.com
http://copilotco.com
http://www.amblitec.com
http://www.bestgymever.com/
http://apps.in/
http://takemeeast.net
http://www.coderaising.org
http://www.zigzagbags.com.au

Mezzanine,

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

12 Chapter 1. Table Of Contents

http://verifip.com/
http://www.clictv.tv/
http://www.jerivas.com/
http://heathergregorynutrition.com
http://coronado-realty.com
http://loanstohomes.com
http://genslergroup.com
https://sanimedicaltourism.com
http://grupoinvista.com
http://brooklynnavyyard.org/
http://mezzathe.me/
http://www.nektra.com/
https://bootstrapasap.com/
http://www.centerforjobs.org/
http://www.sjkingston.com
http://www.codejuggle.dj
http://food.hypertexthero.com
http://ausdwcon.org
http://www.distilled.net/
http://www.openmrp.es
http://www.arkadesnowboarding.com/
http://www.linktective.com
http://www.zetalab.de
http://www.local706.org
http://www.anywhereism.net
http://aldlocator.com
http://sdhome4you.com
http://coronadousd.net
http://coronadoinn.com
http://csfkids.org
http://www.lightandlifechristianschool.com
http://themorabitogroup.com
http://nancygardnerlaw.com
http://legalmattersllp.com
http://stalwartcom.com
http://ubuntuconsultants.com

Mezzanine,

•

•

•

•

•

•

•

•

•

•

1.1.11

• “I’m enjoying working with Mezzanine, it’s good work” -, chairman

• “Mezzanine looks like it may be Django’s killer app” -, ex CTO of, founder
of

• “Mezzanine looks pretty interesting, tempting to get me off Wordpress” -, Python core contributor,Python Software Foundation board member

• “I think I’m your newest fan. Love these frameworks” -, integrations engineer at

• “Mezzanine is amazing” -, founder of and

• “Mezzanine convinced me to switch from the Ruby world over to Python” -, developer

• “Like Linux and Python, Mezzanine just feels right” -, Linux For Dummies author,
Journal columnist

• “Impressed with Mezzanine so far” -, founder of

• “From the moment I installed Mezzanine, I have been delighted, both with the initial experience and the com-
munity involved in its development” -, founder of

• “You need to check out the open source project Mezzanine. In one word: Elegant” -, developer

1.2

Mezzanine primarily revolves around the models found in two packages, mezzanine.core and
mezzanine.pages. This section describes these models and how to extend them to create your own cus-
tom content for a Mezzanine site.

1.2.1 Page Model

The foundation of a Mezzanine site is the model mezzanine.pages.models.Page. Each Page in-
stance is stored in a hierarchical tree to form the site’s navigation, and an interface for managing the struc-
ture of the navigation tree is provided in the admin via mezzanine.pages.admin.PageAdmin. All
types of content inherit from the Page model and Mezzanine provides a default content type via the
mezzanine.pages.models.RichTextPage model which simply contains a WYSIWYG editable field for
managing HTML content.

1.2. Content Architecture 13

http://wineabitcoronado.com
http://mercurymastering.com
http://flowgrammable.org
http://shibemart.com
http://caisbalderas.com/
http://www.pending.io
http://peruginicase.it/
https://www.youpatch.com
http://batistapeniel.org
http://www.perceptyx.com/
http://www.lindbergd.info/
http://www.python.org/psf/
http://an.ton.io/
http://www.hp.com/
http://www.tabblo.com/
http://jessenoller.com/
http://www.python.org/psf/
https://twitter.com/emilepetrone
http://urbanairship.com/
http://cartwheelweb.com/
http://www.pyladies.com
http://djangopackages.com/
http://github.com/fusepilot/
http://www.linuxjournal.com/blogs/phil-hughes
http://www.linuxjournal.com
http://www.linuxjournal.com
http://blog.bradmontgomery.net
http://workforpie.com/
http://head3.com/
http://head3.com
http://hagianis.com

Mezzanine,

1.2.2

In order to handle different types of pages that require more structured content than provided by the RichTextPage
model, you can simply create your own models that inherit from Page. For example if we wanted to have pages that
were authors with books:

from django.db import models
from mezzanine.pages.models import Page

The members of Page will be inherited by the Author model, such
as title, slug, etc. For authors we can use the title field to
store the author’s name. For our model definition, we just add
any extra fields that aren’t part of the Page model, in this
case, date of birth.

class Author(Page):
dob = models.DateField("Date of birth")

class Book(models.Model):
author = models.ForeignKey("Author")
cover = models.ImageField(upload_to="authors")

Next you’ll need to register your model with Django’s admin to make it available as a content type. If your content
type only exposes some new fields that you’d like to make editable in the admin, you can simply register your model
using the mezzanine.pages.admin.PageAdmin class:

from django.contrib import admin
from mezzanine.pages.admin import PageAdmin
from .models import Author

admin.site.register(Author, PageAdmin)

Any regular model fields on your content type will be available when adding or changing an instance of it in the admin.
This is similar to Django’s behaviour when registering models in the admin without using an admin class, or when
using an admin class without fieldsets defined. In these cases all the fields on the model are available in the admin.

If however you need to customize your admin class, you can inherit from PageAdmin and implement your own
admin class. The only difference is that you’ll need to take a copy of PageAdmin.fieldsets and modify it if you
want to implement your own fieldsets, otherwise you’ll lose the fields that the Page model implements:

from copy import deepcopy
from django.contrib import admin
from mezzanine.pages.admin import PageAdmin
from .models import Author, Book

author_extra_fieldsets = ((None, {"fields": ("dob",)}),)

class BookInline(admin.TabularInline):
model = Book

class AuthorAdmin(PageAdmin):
inlines = (BookInline,)
fieldsets = deepcopy(PageAdmin.fieldsets) + author_extra_fieldsets

admin.site.register(Author, AuthorAdmin)

When registering content type models with PageAdmin or subclasses of it, the admin class won’t be listed in the
admin index page, instead being made available as a type of Page when creating new pages from the navigation tree.

14 Chapter 1. Table Of Contents

Mezzanine,

: When creating custom content types, you must inherit directly from the Page model. Further levels of sub-
classing are currently not supported. Therefore you cannot subclass the RichTextPage or any other custom
content types you create yourself. Should you need to implement a WYSIWYG editable field in the way the
RichTextPage model does, you can simply subclass both Page and RichText, the latter being imported from
mezzanine.core.models.

1.2.3

When creating models that inherit from the Page model, multi-table inheritance is used under the hood. This means
that when dealing with the page object, an attribute is created from the subclass model’s name. So given a Page
instance using the previous example, accessing the Author instance would be as follows:

>>> Author.objects.create(title="Dr Seuss")
<Author: Dr Seuss>
>>> page = Page.objects.get(title="Dr Seuss")
>>> page.author
<Author: Dr Seuss>

And in a template:

<h1>{{ page.author.title }}</h1>
<p>{{ page.author.dob }}</p>
{% for book in page.author.book_set.all %}

{% endfor %}

The Pagemodel also contains the method Page.get_content_model for retrieving the custom instance without
knowing its type:

>>> page.get_content_model()
<Author: Dr Seuss>

1.2.4

The view function mezzanine.pages.views.page handles returning a Page instance to a template. By default
the template pages/page.html is used, but if a custom template exists it will be used instead. The check for a
custom template will first check for a template with the same name as the Page instance’s slug, and if not then
a template with a name derived from the subclass model’s name is checked for. So given the above example the
templates pages/dr-seuss.html and pages/author.html would be checked for respectively.

The view function further looks through the parent hierarchy of the Page. If a Page in-
stance with slug authors/dr-seuss is a child of the Page with slug authors, the tem-
plates pages/authors/dr-seuss.html, pages/authors/dr-seuss/author.html,
pages/authors/author.html, pages/author.html, and pages/page.html would be checked
for respectively. This lets you specify a template for all children of a Page and a different template for the Page
itself. For example, if an additional author were added as a child page of authors/dr-seuss with the slug
authors/dr-seuss/theo-lesieg, the template pages/authors/dr-seuss/author.html would be
among those checked.

1.2.5

A typical problem that reusable Django apps face, is being able to extend the app’s templates rather than overriding
them. The app will usually provide templates that the app will look for by name, which allows the developer to
create their own versions of the templates in their project’s templates directory. However if the template is sufficiently

1.2. Content Architecture 15

Mezzanine,

complex, with a good range of extendable template blocks, they need to duplicate all of the features of the template
within their own version. This may cause the project’s version of the templates to become incompatible as new versions
of the upstream app become available.

Ideally we would be able to use Django’s extends tag to extend the app’s template instead, and only override the
template blocks we’re interested in. The problem with this however, is that the app will attempt to load the template
with a specific name, so we can’t override and extend a template at the same time, as circular inheritance will occur,
e.g. Django thinks the template is trying to extend itself, which is impossible.

To solve this problem, Mezzanine provides the overextends template tag, which allows you to extend a template
with the same name. The overextends tag works the same way as Django’s extends tag, (in fact it subclasses
it), so it must be the first tag in the template. What it does differently is that the template using it will be excluded
from loading when Django searches for the template to extend from.

1.2.6

So far we’ve covered how to create and display custom types of pages, but what if we want to extend them further with
more advanced features? For example adding a form to the page and handling when a user submits the form. This
type of logic would typically go into a view function, but since every Page instance is handled via the view function
mezzanine.pages.views.page we can’t create our own views for pages. Mezzanine solves this problem using
Page Processors.

Page Processors are simply functions that can be associated to any custom Page models and are then called inside
the mezzanine.pages.views.page view when viewing the associated Page instance. A Page Processor will
always be passed two arguments - the request and the Page instance, and can either return a dictionary that will
be added to the template context, or it can return any of Django’s HttpResponse classes which will override the
mezzanine.pages.views.page view entirely.

To associate a Page Processor to a custom Page model you must create the function for it in a module
called page_processors.py inside one of your INSTALLED_APPS and decorate it using the decorator
mezzanine.pages.page_processors.processor_for.

Continuing on from our author example, suppose we want to add an enquiry form to each author page. Our
page_processors.py module in the author app would be as follows:

from django import forms
from django.http import HttpResponseRedirect
from mezzanine.pages.page_processors import processor_for
from .models import Author

class AuthorForm(forms.Form):
name = forms.CharField()
email = forms.EmailField()

@processor_for(Author)
def author_form(request, page):

form = AuthorForm()
if request.method == "POST":

form = AuthorForm(request.POST)
if form.is_valid():

Form processing goes here.
redirect = request.path + "?submitted=true"
return HttpResponseRedirect(redirect)

return {"form": form}

The processor_for decorator can also be given a slug argument rather than a Page subclass. In this case the
Page Processor will be run when the exact slug matches the page being viewed.

16 Chapter 1. Table Of Contents

Mezzanine,

1.2.7

The navigation tree in the admin where pages are managed will take into account any permissions defined usingDjango’s permission system. For example if a logged in user doesn’t have permission to add new instances of the
Author model from our previous example, it won’t be listed in the types of pages that user can add when viewing
the navigation tree in the admin.

In conjunction with Django’s permission system, the Page model also implements the methods can_add,
can_change and can_delete. These methods provide a way for custom page types to implement their own
permissions by being overridden on subclasses of the Page model.

Each of these methods takes a single argument which is the current request object. This provides the ability to define
custom permission methods with access to the current user as well.

: The can_add permission in the context of an existing page has a different meaning than in the context of an overall
model as is the case with Django’s permission system. In the case of a page instance, can_add refers to the ability
to add child pages.

For example, if our Author content type should only contain one child page at most, and only be deletable when
added as a child page (unless you’re a superuser), the following permission methods could be implemented:

class Author(Page):
dob = models.DateField("Date of birth")

def can_add(self, request):
return self.children.count() == 0

def can_delete(self, request):
return request.user.is_superuser or self.parent is not None

1.2.8

We’ve looked closely at the aspects of individual pages, now let’s look at displaying all of the pages as a hierarchical
menu. A typical site may contain several different page menus, for example a menu that shows primary pages on the
header of the site, with secondary pages as drop-down lists. Another type of menu would be a full or partial tree in a
side-bar on the site. The footer may display a menu with primary and secondary pages grouped together as vertical
lists.

Mezzanine provides the page_menu template tag for rendering the above types of page menus, or any other type you
can think of. The page_menu template tag is responsible for rendering a single branch of the page tree at a time, and
accepts two optional arguments (you’ll usually need to supply at least one of them) in either order. The arguments are
the name of a menu template to use for a single branch within the page tree, and the parent menu item for the branch
that will be rendered.

The page menu template will be provided with a variable page_branch, which contains a list of pages for the
current branch. We can then call the page_menu template tag for each page in the branch, using the page as the
parent argument to render its children. When calling the page_menu template tag from within a menu template, we
don’t need to supply the template name again, as it can be inferred. Note that by omitting the parent page argument
for the page_menu template tag, the first branch rendered will be all of the primary pages, that is, all of the pages
without a parent.

Here’s a simple menu example using two template files, that renders the entire page tree using unordered list HTML
tags:

<!-- First template: perhaps base.html, or an include file -->
{% load pages_tags %}

1.2. Content Architecture 17

http://docs.djangoproject.com/en/dev/topics/auth/#permissions

Mezzanine,

{% page_menu "pages/menus/my_menu.html" %}

<!-- Second template: pages/menus/my_menu.html -->
{% load pages_tags %}

{% for page in page_branch %}

{{ page.title }}
{% page_menu page %}

{% endfor %}

The first file starts off the menu without specifying a parent page so that primary pages are first rendered, and only
passes in the menu template to use. The second file is the actual menu template that includes itself recursively for
each branch in the menu. We could even specify a different menu template in the call to page_menu in our menu
template, if we wanted to use a different layout for child pages.

Filtering Menus

Each Page instance has a field in_menus which specifies which menus the page should appear in. In the admin
interface, the in_menus field is a list of checkboxes for each of the menu templates. The menu choices for the
in_menus field are defined by the PAGE_MENU_TEMPLATES setting, which is a sequence of menu templates.
Each item in the sequence is a three item sequence, containing a unique ID for the template, a label for the template,
and the template path. For example in your settings.py module:

PAGE_MENU_TEMPLATES = (
(1, "Top navigation bar", "pages/menus/dropdown.html"),
(2, "Left-hand tree", "pages/menus/tree.html"),
(3, "Footer", "pages/menus/footer.html"),

)

The selections made for the in_menus field on each page don’t actually filter a page from being included in the
page_branch variable that contains the list of pages for the current branch. Instead it’s used to set the value of
page.in_menu for each page in the menu template, so it’s up to your menu template to check the page’s in_menu
attribute explicitly, in order to exclude it:

<!-- Second template again, with in_menu support -->
{% load pages_tags %}

{% for page in page_branch %}
{% if page.in_menu %}

{{ page.title }}
{% page_menu page %}

{% endif %}
{% endfor %}

Note that if a menu template is not defined in the PAGE_MENU_TEMPLATES setting, the branch pages supplied to it
will always have the in_menu attribute set to True, so the only way this will be False is if the menu template has
been added to PAGE_MENU_TEMPLATES, and then not selected for a page in the admin interface.

18 Chapter 1. Table Of Contents

Mezzanine,

Menu Variables

The page_menu template tag provides a handful of variables, both in the template context, and assigned to each page
in the branch, for helping you to build advanced menus.

• page_branch - a list of pages for the current branch

• on_home - a boolean for whether the homepage is being viewed

• has_home - a boolean for whether a page object exists for the homepage, which is used to check whether a
hard-coded link to the homepage should be used in the page menu

• branch_level - an integer for the current branch depth

• page_branch_in_menu - a boolean for whether this branch should be in the menu (see “filtering menus”
below)

• parent_page - a reference to the parent page

• page.in_menu - a boolean for whether the branch page should be in the menu (see “filtering menus” below)

• page.has_children - a boolean for whether the branch page has any child pages at all, disregarding the
current menu

• page.has_children_in_menu - a boolean for whether the branch page has any child pages that appear
in the current menu

• page.num_children - an integer for the number of child pages the branch page has in total, disregarding
the current menu

• page.num_children_in_menu - an integer for the number of child pages the branch page has, that also
appear in the current menu

• page.is_current_child - a boolean for whether the branch page is a child of the current page being
viewed

• page.is_current_sibling - a boolean for whether the branch page is a sibling (has the same parent) of
the current page being viewed

• page.is_current_parent - a boolean for whether the branch page is the direct parent of the current page
being viewed.

• page.is_current_or_ascendant - a boolean for whether the branch page is the current page being
viewed, or an ascendant (parent, grand-parent, etc) of the current page being viewed

• page.is_primary - a boolean for whether the branch page is a primary page (has no parent)

• page.html_id - a unique string that can be used as the HTML ID attribute

• page.branch_level - an integer for the branch page’s depth

Here’s a commonly requested example of custom menu logic. Suppose you have primary navigation across the top
of the site showing only primary pages, representing sections of the site. You then want to have a tree menu in a
sidebar, that displays all pages within the section of the site currently being viewed. To achieve this we recursively
move through the page tree, only drilling down through child pages if page.is_current_or_ascendant is
True, or if the page isn’t a primary page. The key here is the page.is_current_or_ascendant check is only
applied to the primary page, so all of its descendants end up being rendered. Finally, we also only display the link to
each page if it isn’t the primary page for the section:

{% load pages_tags %}

{% for page in page_branch %}
{% if page.in_menu %}
{% if page.is_current_or_ascendant or not page.is_primary %}

1.2. Content Architecture 19

Mezzanine,

{% if not page.is_primary %}
{{ page.title }}
{% endif %}
{% page_menu page %}

{% endif %}
{% endif %}
{% endfor %}

1.2.9

Sometimes you might need to use regular Django applications within your site, that fall outside of Mezzanine’s page
structure. Mezzanine fully supports using regular Django applications. All you need to do is add the app’s urlpatterns
to your project’s urls.py module. Mezzanine’s blog application for example, does not use Page content types, and
is just a regular Django app.

Mezzanine provides some helpers for your Django apps to integrate more closely with Mezzanine.

The Displayable Model

The abstract model mezzanine.core.models.Displayable and associated manager
mezzanine.core.managers.PublishedManager provide common features for items that can be dis-
played on the site with their own URLs (also known as slugs). Mezzanine’s Page model subclasses it. Some of its
features are:

• Meta data such as a title, description and keywords.

• Auto-generated slug from the title.

• Draft/published status with the ability to preview drafts.

• Pre-dated publishing.

• Searchable by Mezzanine’s Search Engine.

Models that do not inherit from the Page model described earlier should subclass the Displayable model if any
of the above features are required. An example of this can be found in the mezzanine.blog application, where
BlogPost instances contain their own URLs and views that fall outside of the regular URL/view structure of the
Page model.

Third-party App Integration

A common requirement when using regular Django apps with Mezzanine is for pages in the site’s navigation to point
to the urlpatterns for the app. Implementing this simply requires creating a page with a URL used by the application.
The template rendered by the application’s view will have a page variable in its context, that contains the current
page object that was created with the same URL.

1.3

So far under Content Architecture the concept of subclassing Mezzanine’s models has been described. This section
describes the hooks Mezzanine provides for directly modifying the behaviour of its models.

20 Chapter 1. Table Of Contents

Mezzanine,

1.3.1

Mezzanine provides the setting EXTRA_MODEL_FIELDS which allows you to define a sequence of fields that will
be injected into Mezzanine’s (or any library’s) models.

: Using the following approach comes with certain trade-offs described below in Field Injection Caveats . Be sure to
fully understand these prior to using the EXTRA_MODEL_FIELDS setting.

Each item in the EXTRA_MODEL_FIELDS sequence is a four item sequence. The first two items are the dotted path
to the model and its field name to be added, and the dotted path to the field class to use for the field. The third and
fourth items are a sequence of positional args and a dictionary of keyword args, to use when creating the field instance.

For example suppose you want to inject a custom ImageField from a third party library into Mezzanine’s
BlogPost model, you would define the following in your projects’s settings module:

EXTRA_MODEL_FIELDS = (
Four-item sequence for one field injected.
(

Dotted path to field.
"mezzanine.blog.models.BlogPost.image",
Dotted path to field class.
"somelib.fields.ImageField",
Positional args for field class.
("Image",),
Keyword args for field class.
{"blank": True, "upload_to: "blog"},

),
)

Each BlogPost instance will now have an image attribute, using the ImageField class defined in the fictitious
somelib.fields module.

Another interesting example would be adding a field to all of Mezzanine’s content types by injecting fields into the
Page class. Continuing on from the previous example, suppose you wanted to add a regular Django IntegerField
to all content types:

EXTRA_MODEL_FIELDS = (
(

"mezzanine.blog.models.BlogPost.image",
"somelib.fields.ImageField",
("Image",),
{"blank": True, "upload_to": "blog"},

),
Example of adding a field to *all* of Mezzanine’s content types:
(

"mezzanine.pages.models.Page.another_field",
"IntegerField", # ’django.db.models.’ is implied if path is omitted.
("Another name",),
{"blank": True, "default": 1},

),
)

Note here that the full path for the field class isn’t required since a regular Django field is used - the
django.db.models. path is implied.

1.3. Model Customization 21

Mezzanine,

1.3.2

The above technique provides a great way of avoiding the performance penalties of SQL JOINS required by the
traditional approach of, however some extra consideration is required when used with migration
tools like. In the first example above, South views the new image field on the BlogPost model of the
mezzanine.blog app. As such in order to create a migration for it, the migration must be created for the blog
app itself and by default would end up in the migrations directory of the blog app, which completely goes against the
notion of not modifying the blog app to add your own custom fields.

One approach to address this is to use the --stdout argument of South’s schemamigration command, and
create your own migration file located somewhere in your project or app:

$ python manage.py schemamigration blog --auto --stdout >> myapp/migrations/0001_blog_customization.py
$ python manage.py migrate myapp

Be warned that over time this approach will almost certainly require some manual intervention by way of editing
migrations, or modifying the database manually to create the correct state. Ultimately there is a trade-off involved
here.

1.3.3

Whether using the above approach to inject fields onto models, or taking the more traditional approach of subclassing
models, most often you will also want to expose new fields to the admin interface. This can be achieve by simply
unregistering the relevant admin class, subclassing it, and re-registering your new admin class for the associated
model. Continuing on from the first example, the code below takes a copy of the fieldsets definition for the
original BlogPostAdmin, and injects our custom field’s name into the desired position.:

In myapp/admin.py

from copy import deepcopy
from django.contrib import admin
from mezzanine.blog.admin import BlogPostAdmin
from mezzanine.blog.models import BlogPost

blog_fieldsets = deepcopy(BlogPostAdmin.fieldsets)
blog_fieldsets[0][1]["fields"].insert(-2, "image")

class MyBlogPostAdmin(BlogPostAdmin):
fieldsets = blog_fieldsets

admin.site.unregister(BlogPost)
admin.site.register(BlogPost, MyBlogPostAdmin)

1.4

Mezzanine uses the standard allowing you to add admin classes as you normally would with
a Django project, but also provides the following enhancements to the admin interface that are configurable by the
developer.

1.4.1

When first logging into the standard Django admin interface a user is presented with the list of models that they have
permission to modify data for. Mezzanine takes this feature and uses it to provide a navigation menu that persists

22 Chapter 1. Table Of Contents

https://docs.djangoproject.com/en/1.3/topics/db/models/#multi-table-inheritance
http://south.aeracode.org/
http://docs.djangoproject.com/en/dev/ref/contrib/admin/

Mezzanine,

across every section of the admin interface making the list of models always accessible.

Using the standard Django admin the grouping and ordering of these models aren’t configurable, so Mezzanine pro-
vides the setting ADMIN_MENU_ORDER that can be used to control the grouping and ordering of models when listed
in the admin area.

This setting is a sequence of pairs where each pair represents a group of models. The first item in each pair is the name
to give the group and the second item is the sequence of app/model names to use for the group. The ordering of both
the groups and their models is maintained when they are displayed in the admin area.

For example, to specify two groups Content and Site in your admin with the first group containing models from
Mezzanine’s pages and blog apps, and the second with the remaining models provided by Django, you would
define the following in your projects’s settings module:

ADMIN_MENU_ORDER = (
("Content", ("pages.Page", "blog.BlogPost", "blog.Comment",)),
("Site", ("auth.User", "auth.Group", "sites.Site", "redirects.Redirect")),

)

Any admin classes that aren’t specifed are included using Django’s normal approach of grouping models alphabetically
by application name. You can also control this behavior by implementing a in_menu method on your admin class,
which should return True or False. When implemented, this method controls whether the admin class appears in
the menu or not. Here’s an advanced example that excludes the BlogCategoryAdmin class from the menu, unless
it is explicitly defined in ADMIN_MENU_ORDER:

class BlogCategoryAdmin(admin.ModelAdmin):
"""
Admin class for blog categories. Hides itself from the admin menu
unless explicitly specified.
"""

fieldsets = ((None, {"fields": ("title",)}),)

def in_menu(self):
"""
Hide from the admin menu unless explicitly set in ‘‘ADMIN_MENU_ORDER‘‘.
"""
for (name, items) in settings.ADMIN_MENU_ORDER:

if "blog.BlogCategory" in items:
return True

return False

1.4.2

It is possible to inject custom navigation items into the ADMIN_MENU_ORDER setting by specifying an item using a
two item sequence, the first item containing the title and second containing the named urlpattern that resolves to the
url to be used.

Continuing on from the previous example, Mezzanine includes a fork of the popular application
which contains a named urlpattern fb_browse and is given the title Media Library to create a custom navigation
item:

ADMIN_MENU_ORDER = (
("Content", ("pages.Page", "blog.BlogPost", "blog.Comment",

("Media Library", "fb_browse"),)),
("Site", ("auth.User", "auth.Group", "sites.Site", "redirects.Redirect")),

)

1.4. Admin Customization 23

http://code.google.com/p/django-filebrowser/

Mezzanine,

You can also use this two-item sequence approach for regular app/model names if you’d like to give them a custom
title.

1.4.3

When using the standard Django admin interface, the dashboard area shown when a user first logs in provides the
list of available models and a list of the user’s recent actions. Mezzanine makes this dashboard configurable by the
developer by providing a system for specifying Django that will be displayed in the dashboard area.

The dashboard area is broken up into three columns, the first being wide and the second and third being narrow.
Mezzanine then provides the setting DASHBOARD_TAGS which is a sequence of three sequences - one for each the
three columns. Each sequence contains the names of the inclusion tags in the format tag_lib.tag_name that will
be rendered in each of the columns .

The list of models and recent actions normally found in the Django admin are available as inclusion tags via
mezzanine_tags.app_list and mezzanine_tags.recent_actions respectively. For example, to con-
figure the dashboard with a blog form above the model list in the first column, a list of recent comments in the second
column and the recent actions list in the third column, you would define the following in your projects’s settings
module:

DASHBOARD_TAGS = (
("blog_tags.quick_blog", "mezzanine_tags.app_list"),
("comment_tags.recent_comments",),
("mezzanine_tags.recent_actions",),

)

Here we can see the quick_blog inclusion tag provided by the mezzanine.blog.templatetags.blog_tags
module and the recent_comments inclusion tag provided by the mezzanine.generic.templatetags.comment_tags
module.

1.4.4

By default, Mezzanine uses the to provide rich editing for all model fields of the type
mezzanine.core.fields.RichTextField. The setting RICHTEXT_WIDGET_CLASS contains the import
path to the widget class that will be used for editing each of these fields, which therefore provides the ability for
implementing your own editor widget which could be a modified version of TinyMCE, a different editor or even no
editor at all.

: If you’d only like to customize the TinyMCE options specified in its JavaScript setup, you can do so via the
TINYMCE_SETUP_JS setting which lets you specify the URL to your own TinyMCE setup JavaScript file.

The default value for the RICHTEXT_WIDGET_CLASS setting is the string
"mezzanine.core.forms.TinyMceWidget". The TinyMceWidget class referenced here provides
the necessary media files and HTML for implementing the TinyMCE editor, and serves as a good reference point for
implementing your own widget class which would then be specified via the RICHTEXT_WIDGET_CLASS setting.

In addition to RICHTEXT_WIDGET_CLASS you may need to customize the way your content is rendered at the
template level. Post processing of the content can be achieved through the RICHTEXT_FILTERS setting, which is a
sequence of string, each one containing the dotted path to a Python function, that will be used as a processing pipeline
for the content. Think of them like Django’s middleware or context processors.

Say, for example, you had a RICHTEXT_WIDGET_CLASS that allowed you to write your content in a popular wiki
syntax such as markdown. You’d need a way to convert that wiki syntax into HTML right before the content was
rendered:

24 Chapter 1. Table Of Contents

http://docs.djangoproject.com/en/dev/howto/custom-template-tags/#inclusion-tags
http://tinymce.moxiecode.com/

Mezzanine,

... in myproj.filter
from markdown import markdown

def markdown_filter(content):
"""
Converts markdown formatted content to html
"""
return markdown(content)

... in myproj.settings
RICHTEXT_FILTERS = (

"myproj.filter.markdown_filter",
)

With the above, you’d now see the converted HTML content rendered to the template, rather than the raw markdown
formatting.

1.4.5

Mezzanine’s Media Library (based on django-filebrowser) provides a that can be used by custom
widgets to allow users to select previously uploaded files.

When using a custom widget for the WYSIWYG editor via the RICHTEXT_WIDGET_CLASS setting, you can show
the Media Library dialog from your custom widget, by doing the following:

1. Load the following media resources in your widget, perhaps using a:

css filebrowser/css/smoothness/jquery-ui-1.9.1.custom.min.css

js

mezzanine/js/%s’ % settings.JQUERY_FILENAME

filebrowser/js/jquery-ui-1.9.1.custom.min.js

filebrowser/js/filebrowser-popup.js

2. Call the JavaScript function browseMediaLibrary to show the dialog. The function is defined in
filebrowser/js/filebrowser-popup.js, and takes the following two arguments:

Callback function The function that will be called after the dialog is closed. The function will be
called with a single argument, which will be:

• null: if no selection was made (e.g. dialog is closed by hitting ESC), or

• the path of the selected file.

Type (optional) Type of files that are selectable in the dialog. Defaults to image.

1.5

The following section documents general utilities available with Mezzanine. While these aren’t a core part of Mezza-
nine itself, they’re widely used across many areas of Mezzanine, and can be very useful in conjunction with your own
custom content and features.

Firstly covered are the utilities found in the mezzanine.generic app, such as Keywords, Threaded Comments,
and Ratings. Each of these form a common pattern:

• A model is provided containing generic relationships using Django’s app

1.5. Utilities 25

http://jqueryui.com/
http://jqueryui.com/dialog/
https://docs.djangoproject.com/en/dev/topics/forms/media/
https://docs.djangoproject.com/en/dev/ref/contrib/contenttypes/

Mezzanine,

• A custom model field is provided for defining relationships to the mezzanine.generic model, which can
then be applied to any of your own models

• The custom field injects extra fields onto your model, with de-normalized data populated on save

• Template tags are provided for displaying the related data, forms for posting them, and views for handling form
posts where applicable

For a complete implementation reference, take a look at the built-in blog app mezzanine.blog which makes use
of all these.

Lastly, some of the General Template Tags found within mezzanine.core.templatetags.mezzanine_tags
are covered.

1.5.1

Keywords provided by the mezzanine.generic app are pervasive throughout Mezzanine. They’re assigned to
both the Page model and the Displayable model from which it’s derived. Given that these models form the
foundation of most content within Mezzanine, more often than not you’re dealing with models that are already using
keywords.

Suppose we have a regular Django model though, such as our Book example from the previous example in Content
Architecture:

from django.db import models
from mezzanine.generic.fields import KeywordsField

class Book(models.Model):
author = models.ForeignKey("Author")
cover = models.ImageField(upload_to="authors")
keywords = KeywordsField()

When editing Book instances in the admin, we’ll now be able to choose keywords from the pool of keywords used
throughout the site, and also assign new keywords if needed. We can then easily query for books given any keywords:

Book.objects.filter(keywords__keyword__title__in=["eggs", "ham"])

Given a Book instance in a template, we can also display the book’s keywords using the keywords_for template
tag, which will inject a list of keywords into the template, using the as var_name variable name argument supplied
to it:

{% load keyword_tags %}

{% keywords_for book as keywords %}
{% if keywords %}

Keywords:
{% for keyword in keywords %}
{{ keyword }}
{% endfor %}

{% endif %}

You’ll see here each Keyword instance has a slug field - we use it in a fictitious urlpattern called
books_for_keyword, which could then retrieve books for a given keyword by slug:

Book.objects.filter(keywords__keyword__slug=slug)

26 Chapter 1. Table Of Contents

Mezzanine,

Any model with a KeywordsField field assigned to it will have a FIELD_NAME_string field assigned to
it, where FIELD_NAME is the name given to the KeywordsField attribute on your model, which would be
Book.keywords_string in the above example. Each time keywords change, the keywords_string field
is populated with a comma separated string list of each of the keywords. This can be used in conjunction with Mezza-
nine’s Search Engine - behavior that is provided by default for the Page and Displayable models.

1.5.2

Threaded comments provided by the mezzanine.generic app are an extension of Django’sdjango.contrib.comments app. Mezzanine’s threaded comments fundamentally extend Django’s comments to
allow for threaded conversations, where comments can be made in reply to other comments.

Again as with our Book example, suppose we wanted to added threaded conversations to our book pages in templates,
we first define comments on the Book model:

from django.db import models
from mezzanine.generic.fields import CommentsField

class Book(models.Model):
author = models.ForeignKey("Author")
cover = models.ImageField(upload_to="authors")
comments = CommentsField()

Then given a Book instance named book in a template:

{% load comment_tags %}

<h3>There are {{ book.comments_count }} comment{{ book.comments_count|pluralize }}</h3>
{% comments_for book %}

The comments_for template tag is a Django, that includes the tem-
plate generic/includes/comments.html, which recursively includes the template
generic/includes/comment.html to build up the threaded conversation. To customize the look and
feel of the threaded conversation, simply override these templates in your project.

As you can see in the template example we have a Book.comments_count field injected onto our Book model.
This works the same way as described above for the KeywordsField, where the name is derived from the name
given to the CommentsField attribute on the model, and updated each time the number of comments change.

You can also require that users must be logged in to comment. This is controlled by setting the
COMMENTS_ACCOUNT_REQUIRED setting to True. In this case, the comment form will still be displayed, but
on submitting a comment, the user will be redirected to the login/signup page, where after logging in, their comment
will be posted without having to re-submit it. See the Public User Accounts section for full details on configuring
public user accounts in Mezzanine.

1.5.3

The ratings provided by the mezzanine.generic app allow people to give a rating for any model that has ratings
set up. Suppose we wanted to allow people to rate our books from 1 to 10, first we define what the rating range is via
the RATINGS_RANGE setting:

RATINGS_RANGE = range(1, 11)

And then add ratings to our Book model:

1.5. Utilities 27

https://docs.djangoproject.com/en/dev/ref/contrib/comments/
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#howto-custom-template-tags-inclusion-tags

Mezzanine,

from django.db import models
from mezzanine.generic.fields import RatingField

class Book(models.Model):
author = models.ForeignKey("Author")
cover = models.ImageField(upload_to="authors")
rating = RatingField()

And then in our book template:

{% load rating_tags %}

{% rating_for book %}

The rating_for template tag is another inclusion tag, which uses the template
generic/includes/rating.html. It simply displays the current average rating, and a form with radio
buttons for rating. You may wish to customize this and use visual icons, like stars, for the ratings.

Like the other custom fields in mezzanine.generic, the RatingField will inject fields derived from its at-
tribute name onto the model which it’s assigned to, which are updated when a new rating is made. Given our Book
example, the RatingField would inject:

• Book.rating_average - average rating

• Book.rating_sum - total sum of all ratings

• Book.rating_count - total count of all ratings

Like threaded comments, ratings can be limited to authenticated users by setting the
RATINGS_ACCOUNT_REQUIRED setting to True.

1.5.4

Following are some template tags defined in mezzanine.core.templatetags.mezzanine_tags - they’re
general purpose and can be used across a variety of scenarios.

fields_for

The fields_for template tag is an inclusion tag that takes a form object as its single argument, and renders the
fields for the form. It uses the template core/templates/form_fields.html, which can then be overridden
to customize the look and feel of all forms throughout a Mezzanine site:

{% load mezzanine_tags %}

<form method="POST">
{% fields_for some_form_object %}
<input type="submit">

</form>

sort_by

The sort_by template tag is a general sorting utility. It’s a filter tag similar to Django’s filter tag, but instead
of only accepting sequences of dicts and a key name, it also accepts sequences of objects and an attribute name, making
it much more general purpose.

28 Chapter 1. Table Of Contents

https://docs.djangoproject.com/en/dev/ref/templates/builtins/#std:templatefilter-dictsort

Mezzanine,

Here’s an example with the keywords_for tag described above, which assigns an item_count attribute to each
keyword returned to the template:

{% load mezzanine_tags keywords_tags %}

{% keywords_for book as keywords %}
{% for keyword in keywords|sort_by:"item_count" %}
... etc ...
{% endfor %}

thumbnail

The thumbnail template tag provides on-the-fly image resizing. It takes the relative path to the image file to resize,
a mandatory width and height argument, and an optional quality argument (from 1 to 100). A value of zero can be
provided for either the width or height arguments, in which case the image will be resized proportionally.

When the thumbnail template tag is called for a given set of arguments the first time, the thumbnail is generated and
its relative path is returned. Subsequent calls with the same arguments will return the same thumbnail path, without
resizing it again, so resizes only occur when first requested.

Given our book example’s Book.cover field, suppose we wanted to render cover thumbnails with a 100 pixel width,
and proportional height:

{% load mezzanine_tags %}

1.5. Utilities 29

Mezzanine,

1.6

The below diagram depicts the fields and relationships for all the models in Mezzanine. Click it to view a full version.

1.7

Mezzanine comes with the ability to use different sets of templates depending on the device being used to access the
website. For example one set of templates may be used for desktop browsers with a corresponding set of templates
being used for mobile phones.

Devices are grouped into types with each type being named after the sub-directory containing its specific set of
templates. Each device is then defined by a list of strings that could be found in the user agent that matches
the particular device. This mapping of device sub-directory names to user agent strings is defined in the setting

30 Chapter 1. Table Of Contents

Mezzanine,

DEVICE_USER_AGENTS:

DEVICE_USER_AGENTS = (
("mobile", ("Android", "BlackBerry", "iPhone")),
("desktop", ("Windows", "Macintosh", "Linux")),

)

Given the above example value for DEVICE_USER_AGENTS, suppose a view or template referenced the template
blog/index.html. If an iPhone made the request to the website, the template mobile/blog/index.html
would be searched for, and if a Windows OS made the request then the template desktop/blog/index.html
would be searched for.

: If the device specific templates don’t exist or a user agent isn’t matched to any of the device specific strings, then
the original template name (blog/index.html in the above example) will be used as per usual with Django. This
means that supporting device specific templates is entirely optional.

You can also specify which device should be treated as the default by defining the setting DEVICE_DEFAULT. For
example to ensure templates for the mobile device group are used even when no matching user agent is found, simply
define the following in your project’s settings module:

DEVICE_DEFAULT = "mobile"

1.7.1

Mezzanine includes the app mezzanine.mobile which contains a full set of default templates and assets for
creating a mobile version of your site. Simply add mezzanine.mobile to your INSTALLED_APPS setting to use
it.

1.7.2

Using the DEVICE_USER_AGENTS setting, Mezzanine simply prefixes any referenced template path with the device
specific sub-directory name if a user agent matches one of the strings specified for the device. For example if a user
agent matches the mobile device set of templates, a reference to blog/index.html will be changed to the list
["mobile/blog/index.html", "blog/index.html"] under the hood.

To achieve this, the middleware mezzanine.core.middleware.TemplateForDeviceMiddleware
catches Django TemplateResponse responses, and changes the template list prior to the response being rendered.
As such, any views you implement should return TemplateResponse objects. The table below lists Mezzanine
versions of Django features that can be used to ensure a TemplateResponse is returned.

Django Mezzanine
django.shortcuts.render mezzanine.utils.views.render
django.template.Library().inclusion_tag mezzanine.template.Library().inclusion_tag
django.views.generic.simple.direct_to_templatemezzanine.core.views.direct_to_template

1.8

Mezzanine comes with the ability for content authors to edit content directly within a page while viewing it on the
website, rather than having to log into the admin area. Content authors can simply log into the admin area as usual,
but by selecting Site on the login screen the author will then be redirected back to the website where a small Edit icon
will be found next to each piece of editable content, such as a page’s title or a blog post’s body. Clicking on the Edit
icon will allow the author to update the individual piece of content without leaving the page.

1.8. In-line Editing 31

Mezzanine,

In-line editing can be disabled by setting INLINE_EDITING_ENABLED to False.

1.8.1

Making content in-line editable is as simple as wrapping model fields with a template tag in your templates. The
default templates installed with Mezzanine all have their content configured to be in-line editable. When developing
your own templates from scratch though, you’ll need to perform this step yourself.

The first step is to ensure you have a the template tag editable_loader specified right before the closing
</body> tag in each template. Typically this only needs to be defined in your top-most base template:

{% load mezzanine_tags %}
<html>
<head>

<title>My Website</title>
</head>
<body>

<!-- Content goes here -->
{% editable_loader %}

</body>
</html>

If your site does not use jQuery, you’ll need to include it conditionally in your template’s <head> if the user is a staff
member. If you’re using a different JS library, you can use jQuery.noConflict() to avoid it overwriting the $ symbol.

{% if user.is_staff %}
<script src="{{ STATIC_URL }}mezzanine/js/jquery-1.7.1.min.js">

jQuery.noConflict();
</script>

{% endif %}

The second step is to wrap each instance of a model field with the editable and endeditable template tags, with
the field specified as the editable tag’s argument. The content between the two tags is what will visibly be hinted
to the content author as being editable. It’s possible to not provide any content between the two tags, in which case
the value for the model field specified for the editable tag will simply be used. The model field must always be
specified in the format instance_name.field_name where instance_name is the name of a model instance
in the template context. For example, suppose we had a page variable in our template with title and content
fields:

{% load mezzanine_tags %}
<html>
<head>

<title>{{ page.title }}</title>
</head>
<body>

<!--
No content is specified between the editable tags here, so the
page.title field is simply displayed inside the <h1> tags.
-->
<h1>

{% editable page.title %}{% endeditable %}
</h1>

<!--
Here we are manipulating how the editable content will be regularly
displayed on the page using Django’s truncatewords_html filter as
well as some in-line markup.

32 Chapter 1. Table Of Contents

Mezzanine,

-->
<div>

{% editable page.content %}
<p style="text-align:justify;">

{{ page.content|truncatewords_html:50 }}
</p>
{% endeditable %}

</div>

{% editable_loader %}
</body>
</html>

The editable template tag also allows multiple fields for a model instance to be given as arguments to a single
editable tag. The result of this is still a single Edit icon, but when clicked will display each of the fields specified
for editing, grouped together in a single form. Continuing on from the previous example, if we wanted to group
together the title and content fields:

{% load mezzanine_tags %}
<html>
<head>

<title>{{ page.title }}</title>
</head>
<body>

<!--
A single Edit icon will be displayed indicating the entire area
around the h1 and div tags is editable. Clicking it reveals a form
for editing both fields at once.
-->
{% editable page.title page.content %}
<h1>

{{ page.title }}
</h1>
<div>

<p style="text-align:justify;">
{{ page.content|truncatewords_html:50 }}

</p>
</div>
{% endeditable %}

{% editable_loader %}
</body>
</html>

The only caveat to consider with grouping together fields in a single editable tag is that they must all belong to the
same model instance.

1.9

Mezzanine takes great care to appropriately minimize database queries. This strategy enables Mezzanine to perform
well without a caching configuration. However, caching is also well-supported in the event that you wish to implement
customized caching for your Mezzanine site. Mezzanine is preconfigured to cache aggressively when deployed to a
production site with a cache backend installed.

: By using Mezzanine’s bundled deployment tools, Mezzanine’s caching will be properly configured and in use for

1.9. Caching Strategy 33

Mezzanine,

your production site. Consult the Deployment section for more information. If you would like to have a cache backend
configured but to use a different caching strategy, simply remove the cache middleware described in the next section.

1.9.1

Mezzanine’s caching system employs a hybrid approach which draws from several popular caching techniques and
combines them into one overall implementation. Mezzanine provides its own implementation of
cache middleware, and behaves in a similar way.

Pages are fetched from cache by mezzanine.core.middleware.FetchFromCacheMiddleware, which
should appear at the end of the MIDDLEWARE_CLASSES setting and therefore be activated at the end of the re-
quest phase. If a cache miss occurs, the request is marked as requiring a cache update, which is handled by
mezzanine.core.middleware.UpdateCacheMiddleware, which in turn should appear at the start of
MIDDLEWARE_CLASSES and therefore be activated at the end of the response phase.

Mezzanine’s cache middleware differs from its Django counterpart in a few subtle yet significant ways:

• Setting CACHE_ANONYMOUS_ONLY to False will have no effect, so authenticated users will never use the
cache system.

• Cache keys include the ID for the current Django Site object, and device (see Device Handling).

• Cache keys do not take Vary headers into account, so all unauthenticated visitors will receive the same page
content per URL.

1.9.2

One approach to caching Django sites is to use, which defines the areas of templates to be
cached. Another approach is two-phased rendering, which is the opposite. Using this method, all content is cached by
default. We then define the sections of a template that should not be cached. These sections might be anything that
makes use of the current request object, including session-specific data.

Accordingly, Mezzanine provides the start and end template tags nevercache and endnevercache. Content
wrapped in these tags will not be cached. With two-phased rendering, the page is cached without any of the template
code inside nevercache and endnevercache executed for the first phase. The second phase then occurs after
the page is retrieved from cache (or not), and any template code inside nevercache and endnevercache is then
executed.

Mezzanine’s two-phased rendering is based on Cody Soyland’s and Adrian Holovaty’s which
originally described the technique.

: The template code inside nevercache and endnevercachewill only have access to template tags and variables
provided by a normal request context, with the exception of any variables passed to the template from a view function.
Variables added via context processors such as the current request and via Mezzanine’s settings will be available.
Template tag libraries should be loaded inside these areas of content so as to make use of their template tags.

1.9.3

The final step in Mezzanine’s caching strategy involves a technique known as mint caching, in which the expiry value
for any cache entry is stored in cache along with the cache entry itself. The real expiry value used is the given expiry
plus the value defined by Mezzanine’s CACHE_SET_DELAY_SECONDS setting. Each time a cache entry is requested,
the original expiry time is checked, and, if the expiry time has passed, the stale cache entry is placed back into the
cache along with a new expiry time using the value of CACHE_SET_DELAY_SECONDS. In this case, no cache entry

34 Chapter 1. Table Of Contents

https://docs.djangoproject.com/en/dev/topics/cache/#the-per-site-cache
https://docs.djangoproject.com/en/dev/topics/cache/#the-per-site-cache
https://docs.djangoproject.com/en/dev/topics/cache/#template-fragment-caching
https://github.com/codysoyland/django-phased
http://www.holovaty.com/writing/django-two-phased-rendering/

Mezzanine,

is returned, which has the effect of essentially faking a cache miss, so that the caller can know to regenerate the cache
entry. This approach ensures that cache misses never actually occur and that (almost) only one client will ever perform
regeneration of a cache entry.

Mezzanine’s mint cache is based on created by.

1.10

Deployment of a Mezzanine site to production is mostly identical to deploying a regular Django site. For serving static
content, Mezzanine makes full use of Django’s staticfiles app. For more information, see the Django docs fordeployment and.

1.10.1

Each Mezzanine project comes bundled with utilities for deploying production Mezzanine sites, using. The
provided fabfile.py contains composable commands that can be used to set up all the system-level requirements
on a new based system, manage each of the project-level virtual environments for initial and continuous
deployments, and much more.

Server Stack

The deployed stack consists of the following components:

• - public facing web server

• - internal HTTP application server

• - database server

• - in-memory caching server

• - process control and monitor

: None of the items listed above are required for deploying Mezzanine, they’re simply the components that have been
chosen for use in the bundled fabfile.py. Alternatives such as and will work fine, but you’ll need
to take care of setting these up and deploying yourself. Consult the Django documentation for more information on
using different and servers.

Configuration

Configurable variables are implemented in the project’s settings.py module. Here’s an example:

FABRIC = {
"SSH_USER": "", # SSH username
"SSH_PASS": "", # SSH password (consider key-based authentication)
"SSH_KEY_PATH": "", # Local path to SSH key file, for key-based auth
"HOSTS": [], # List of hosts to deploy to
"VIRTUALENV_HOME": "", # Absolute remote path for virtualenvs
"PROJECT_NAME": "", # Unique identifier for project
"REQUIREMENTS_PATH": "requirements/project.txt", # Path to pip requirements, relative to project
"GUNICORN_PORT": 8000, # Port gunicorn will listen on
"LOCALE": "en_US.utf8", # Should end with ".utf8"
"LIVE_HOSTNAME": "www.example.com", # Host for public site.

1.10. Deployment 35

http://djangosnippets.org/snippets/793/
http://disqus.com
https://docs.djangoproject.com/en/dev/howto/deployment/
https://docs.djangoproject.com/en/dev/howto/static-files/
http://fabfile.org
http://debian.org
http://nginx.org
http://gunicorn.org
http://postgresql.org
http://memcached.org
http://supervisord.org
http://httpd.apache.org/
http://www.mysql.com/
https://docs.djangoproject.com/en/dev/howto/deployment/
https://docs.djangoproject.com/en/dev/ref/databases/

Mezzanine,

"REPO_URL": "", # Git or Mercurial remote repo URL for the project
"DB_PASS": "", # Live database password
"ADMIN_PASS": "", # Live admin user password

}

Commands

Here’s the list of commands provided in a Mezzanine project’s fabfile.py. Consult the for
more information on working with these:

• fab all - Installs everything required on a new system and deploy.

• fab apt - Installs one or more system packages via apt.

• fab backup - Backs up the database.

• fab create - Create a new virtual environment for a project.

• fab deploy - Deploy latest version of the project.

• fab install - Installs the base system and Python requirements for the entire server.

• fab manage - Runs a Django management command.

• fab pip - Installs one or more Python packages within the virtual environment.

• fab psql - Runs SQL against the project’s database.

• fab python - Runs Python code in the project’s virtual environment, with Django loaded.

• fab remove - Blow away the current project.

• fab restart - Restart gunicorn worker processes for the project.

• fab restore - Restores the database.

• fab rollback - Reverts project state to the last deploy.

• fab run - Runs a shell comand on the remote server.

• fab sudo - Runs a command as sudo.

1.10.2

Mezzanine makes use of Django’s sites app to support multiple sites in a single project. This functionality is always
“turned on” in Mezzanine: a single Site record always exists, and is referenced when retrieving site related data,
which most content in Mezzanine falls under.

Where Mezzanine diverges from Django is how the Site record is retrieved. Typically a running instance of a Django
project is bound to a single site defined by the SITE_ID setting, so while a project may contain support for multiple
sites, a separate running instance of the project is required per site.

Mezzanine uses a pipeline of checks to determine which site to reference when accessing content. The most import
of these is one where the host name of the current request is compared to the domain name specified for each Site
record. With this in place, true multi-tenancy is achieved, and multiple sites can be hosted within a single running
instance of the project.

Here’s the list of checks in the pipeline, in order:

• The session variable site_id. This allows a project to include features where a user’s session is explicitly
associated with a site. Mezzanine uses this in its admin to allow admin users to switch between sites to manage,
while accessing the admin on a single domain.

36 Chapter 1. Table Of Contents

http://fabfile.org

Mezzanine,

• The domain matching the host of the current request, as described above.

• The environment variable MEZZANINE_SITE_ID. This allows developers to specify the site for contexts out-
side of a HTTP request, such as management commands. Mezzanine includes a custom manage.py which
will check for (and remove) a --site=ID argument.

• Finally, Mezzanine will fall back to the SITE_ID setting if none of the above checks can occur.

1.10.3

If Twitter feeds are implemented in your templates, a cron job is required that will run the following management
command. For example, if we want the tweets to be updated every 10 minutes:

*/10 * * * * python path/to/your/site/manage.py poll_twitter

This ensures that the data is always available in the site’s database when accessed, and allows you to control how often
the Twitter API is queried. Note that the Fabric script described earlier includes features for deploying templates for
cron jobs, which includes the job for polling Twitter by default.

As of June 2013, Twitter also requires that all API access is authenticated. For this you’ll need to configure OAuth
credentials for your site to access the Twitter API. These settings are configurable as Mezzanine settings. See the
Configuration section for more information on these, as well as the for info on configuring your
OAuth credentials.

1.11

These are some of the most frequently asked questions on the.

• What do I need to know to use Mezzanine?

• Why aren’t my JavaScript and CSS files showing up?

• Why does the WYSIWYG editor strip out my custom HTML?

• Why isn’t the homepage a Page object I can edit via the admin?

• Why is Mezzanine a Django project, and not a Django app?

• Where are all the templates I can modify?

• How do I create/install a theme?

• Why does Mezzanine contain its own [FEATURE] instead of using [PACKAGE]?

• How can I add Mezzanine to an existing Django project?

• Why are Grappelli and Filebrowser forked?

• What is this Pillow dependency?

• Why doesn’t Mezzanine have [FEATURE]?

• Can I use Cartridge without Mezzanine?

• I don’t know how to code, how can I contribute?

1.11. Frequently Asked Questions 37

https://dev.twitter.com/
http://groups.google.com/group/mezzanine-users

Mezzanine,

1.11.1

First and foremost, Mezzanine is based on the. All aspects of working with Mezzanine will benefit
from a good understanding of how Django works. Many questions that are asked within the Mezzanine community
can easily be answered by reading the.

Setting up a development environment, and deploying a Mezzanine site, is the same process as doing so with a regular
Django site. Areas such as version control, installing Python packages, and setting up a web server such as orNGINX, will all be touched upon.

Modifying the look and feel of a Mezzanine powered site requires at least an understanding of HTML, CSS andDjango’s templating system.

Extending Mezzanine by Creating Custom Content Types or using additional Django apps, will require some knowl-
edge of programming with, as well as a good understanding of Django’s components, such as,,urlpatterns and the.

Back to top

1.11.2

Mezzanine makes exclusive use of, for managing static files such as JavaScript, CSS, and
images.

When the DEBUG setting is set to True, as it would be during development, the URL defined by the setting
STATIC_URL (usually /static/), will host any files found in the static directory of any application listed
in the INSTALLED_APPS setting.

When DEBUG is set to False, as it would be for your deployed production site, you must run the collectstatic
command on your live site, which will copy all of the files from the static directory in each application, to the
location defined by the STATIC_ROOT setting. You then need to configure an alias in your web server’s config
(Apache, NGINX, etc) that maps the URL defined by STATIC_URL to serve files from this directory.

Long story short, Django doesn’t serve static content when deployed in production, leaving this up to the public facing
web server, which is absolutely the best tool for this job. Consult for more information.

Back to top

1.11.3

By default, Mezzanine strips out potentially dangerous HTML from fields controlled by the WYSIWYG editor, such
as tags and attributes that could be used to inject JavaScript into a page. If this didn’t occur, a clever staff member
could potentially add JavaScript to a page, that when viewed by an administrator (a staff member with superuser
status), would cause the administrator’s browser to post an update via the admin, that updates the staff member’s user
account and assigns them superuser status.

The above scenario is a fairly obscure one, so it’s possible to customise the level of filtering that occurs. Three levels
of filtering are implemented by default, that can be controlled in the settings section of the admin. These are High (the
default), Low (which allows extra tags such as those required for embedding videos), and None (no filtering occurs).
This is implemented via the RICHTEXT_FILTER_LEVEL setting.

If your situation is one where your staff members are completely trusted, and custom HTML within WYSIWYG
fields is required, then you can modify the filter level accordingly. Further customisation is possible via the
RICHTEXT_ALLOWED_TAGS, RICHTEXT_ALLOWED_ATTRIBUTES and RICHTEXT_ALLOWED_STYLES set-
tings, which can have extra allowed values appended to using the append argument in Mezzanine’s settings API. See
the Registering Settings section for more information.

Back to top

38 Chapter 1. Table Of Contents

https://www.djangoproject.com/
https://docs.djangoproject.com/en/
http://httpd.apache.org/
http://nginx.org/
https://docs.djangoproject.com/en/dev/topics/templates/
http://python.org
https://docs.djangoproject.com/en/dev/topics/db/models/
https://docs.djangoproject.com/en/dev/topics/http/views/
https://docs.djangoproject.com/en/dev/topics/http/urls/
https://docs.djangoproject.com/en/dev/ref/contrib/admin/
https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/
https://docs.djangoproject.com/en/dev/howto/static-files/

Mezzanine,

1.11.4

In our experience, the homepage of a beautiful, content driven website, is quite different from other pages of the
site, that all fall under sets of repeatable page types. The homepage also differs greatly from site to site. Given this,
Mezzanine doesn’t presume how your homepage will be structured and managed. It’s up to you to implement how it
works per site.

By default, the homepage provided with Mezzanine is a static template, namely
mezzanine/core/templates/index.html (or templates/index.html if stored directly in your
project). You can change the urlpattern for the homepage in your project’s urls.py module. Be certain to take
a look at the, as it contains several examples of different types of homepages. In urls.py you’ll
find examples of pointing the homepage to a Page object in the page tree, or pointing the homepage to the blog post
listing page, which is useful for sites that are primarily blogs.

Of course with Django’s models, admin classes, and template tags, the sky is the limit and you’re free to set up the
homepage to be managed in any way you like.

Back to top

1.11.5

Mezzanine comes with many features that are related to content driven websites, yet are quite distinct from each other.
For example user-built forms and blog posts are both common requirements for a website, yet aren’t particularly
related to each other. So Mezzanine as a whole is a collection of different Django apps, all packaged together to work
seamlessly.

Mezzanine provides its own, with settings.py and urls.py modules that configure all of
Mezzanine’s apps, which you can (and should) modify per project.

Back to top

1.11.6

Each of the templates Mezzanine provides can be found in the templates directory of each Django app that
Mezzanine is comprised of. Take the time to explore the structure of these, starting with the base template
mezzanine/core/templates/base.html (or templates/base.html if stored directly in your project)
which is the foundation for the entire site, going more granular as needed.

Once you’re familiar with the templates you’d like to modify, copy them into your project’s templates directory
and modify them there. You can also use the collecttemplates command to copy templates over automatically.
Run python manage.py collecttemplates --help for more info. Be mindful that this means the copied
templates will always be used, rather than the ones stored within Mezzanine itself, which is something to keep in mind
if you upgrade to a newer version of Mezzanine.

Back to top

1.11.7

Prior to version 1.0, Mezzanine had a set of features for creating and installing themes. These mostly were in place to
address handling static files, since at that time Mezzanine was not integrated with. Mezzanine
1.0 makes full use of staticfiles, and so the theming features were removed since they became redundant.

From that point on, a theme in Mezzanine can be implemented entirely as a standard Django app. Simply create a
Django app with templates and static directories, copy the relevant HTML, CSS and JavaScript files into it
from Mezzanine that you wish to modify, and then add the theme app’s name to your project’s INSTALLED_APPS

1.11. Frequently Asked Questions 39

https://github.com/stephenmcd/mezzanine/tree/master/mezzanine/project_template/urls.py
https://github.com/stephenmcd/mezzanine/tree/master/mezzanine/project_template
https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/

Mezzanine,

setting. Be sure to add the theme to the top of the INSTALLED_APPS list, so that its templates are found before
Mezzanine’s versions of the templates.

Have you created a cool theme that you’d like to share with the community? Package your theme up and put it on
and let us know via the- that way people can automatically install it along with their Mezzanine project.

Back to top

1.11.8
AGE]?

To be honest you could implement most of Mezzanine’s features by gluing together dozens of smaller, stand-alone,
open source Django apps. Several larger Django site-building frameworks take this approach, and it’s a noble one.
The downside to this is that a significant portion of time on your project will be spent maintaining the glue between
these apps, as their development evolves independently from each other, as well as from your project itself. At best
you’ll be able to work with the apps’ developers to ease this evolution, at worst you’ll be stuck hacking work-arounds
for incompatibilities between the apps.

One of the core goals of Mezzanine is to avoid this situation, by providing all of the features commonly required by
content driven sites, with just the right level of extensibility to customize your Mezzanine powered site as required.
By taking this approach, the team behind Mezzanine is in complete control over its components, and can ensure they
work together seamlessly.

Back to top

1.11.9

Mezzanine is a Django project made up of multiple Django apps, and is geared towards being used as the basis for new
Django projects, however adding Mezzanine to an existing Django project should be as simple as adding the necessary
settings and urlpatterns.

Mezzanine contains a, which it uses to create new projects. In here you’ll find the necessary
settings.py and urls.py modules, containing the project-level setup for Mezzanine. Of particular note are the
following settings:

• INSTALLED_APPS

• TEMPLATE_CONTEXT_PROCESSORS

• MIDDLEWARE_CLASSES

• PACKAGE_NAME_GRAPPELLI and PACKAGE_NAME_FILEBROWSER (for and
filebrowser integration)

• The call to mezzanine.utils.conf.set_dynamic_settings at the very end of the settings.py
module.

Back to top

1.11.10

Grappelli and are fantastic Django apps, and Mezzanine’s admin interface would be much poorer without
them. When Mezzanine was first created, both of these apps had packaging issues that went unaddressed for quite
some time. Development of Mezzanine moved extremely quickly during its early days, and so the forks
and were created to allow Mezzanine to be packaged up and installed in a single step.

40 Chapter 1. Table Of Contents

http://pypi.python.org/pypi
http://groups.google.com/group/mezzanine-users
https://github.com/stephenmcd/mezzanine/tree/master/mezzanine/project_template
https://github.com/sehmaschine/django-grappelli
https://github.com/sehmaschine/django-filebrowser
https://github.com/sehmaschine/django-filebrowser
https://github.com/sehmaschine/django-grappelli
https://github.com/sehmaschine/django-filebrowser
https://github.com/stephenmcd/grappelli-safe
https://github.com/stephenmcd/filebrowser-safe

Mezzanine,

Over time the packaging issues were resolved, but Grappelli and Filebrowser took paths that weren’t desired in Mez-
zanine. They’re only used in Mezzanine for skinning the admin, and providing a generic media library. Extra features
that have been added to Grappelli and Filebrowser along the way, haven’t been necessary for Mezzanine.

Over time, small changes have also been made to the grappelli_safe and filebrowser_safe forks, in order
to integrate them more closely with Mezzanine. So to this day, the forks are still used as dependencies. They’re stable,
and have relatively low activity.

Back to top

1.11.11

Mezzanine makes use of (PIL) for generating thumbnails. Having PIL as a dependency that
gets automatically installed with Mezzanine has caused issues for some people, due to certain issues with PIL’s own
packaging setup.Pillow is simply a packaging wrapper around PIL that addresses these issues, and ensures PIL is automatically installed
correctly when installing Mezzanine. Pillow is only used when PIL is not already installed.

Back to top

1.11.12

The best answer to this might be found by searching the, where many features that aren’t currently in
Mezzanine have been thoroughly discussed.

Sometimes the conclusion is that certain features aren’t within the scope of what Mezzanine aims to be. Sometimes
they’re great ideas, yet no one has had the time to implement them yet. In the case of the latter, the quickest way to
get your feature added is to get working on it yourself.

Communication via the mailing list is key though. Features have been developed and rejected before, simply because
they were relatively large in size, and developed in a silo without any feedback from the community. Unfortunately
these types of contributions are difficult to accept, since they have the greatest resource requirements in understanding
everything involved, without any previous communication.

Back to top

1.11.13

No. (an ecommerce app) heavily leverages Mezzanine, and in fact it is implemented as an advanced example
of a Mezzanine content type, where each shop category is a page in Mezzanine’s navigation tree. This allows for a
very flexible shop structure, where hierarchical categories can be set up to create your shop.

You could very well use Cartridge and Mezzanine to build a pure Cartridge site, without using any of Mezzanine’s
features that aren’t relevant to Cartridge. However more often than not, you’ll find that general content pages and
forms, will be required to some extent anyway.

Back to top

1.11.14

You’re in luck! Programming is by far the most abundant skill contributed to Mezzanine, and subsequently the least
needed. There are many ways to contribute without writing any code:

• Answering questions on the

1.11. Frequently Asked Questions 41

http://www.pythonware.com/products/pil/
http://pypi.python.org/pypi/Pillow
http://groups.google.com/group/mezzanine-users
http://cartridge.jupo.org
http://groups.google.com/group/mezzanine-users

Mezzanine,

• Triaging

• Improving the documentation

• Promoting Mezzanine via blogs,, etc.

If you don’t have time for any of these things, and still want to contribute back to Mezzanine, donations are always
welcome and can be made via Flattr or PayPal on the. Donations help to support the continued
development of Mezzanine, and go towards paying for infrastructure, such as hosting for the demo site.

Back to top

1.12

Mezzanine provides the ability for public users to create their own accounts for logging into your Mezzanine powered
site. Features that can be restricted to logged-in users include the ability to post comments, make purchases (usingCartridge), view restricted pages, and anything else you’d like to implement. You can also define what a user’s profile
consists of, allowing users to create their own profile page for their account.

The accounts functionality is provided by the app mezzanine.accounts. Adding it to your INSTALLED_APPS
setting will enable signup, login, account updating, and password retrieval features for the public site.

1.12.1

Profiles are implemented via Django’s AUTH_PROFILE_MODULE setting. With mezzanine.accounts installed,
you can create a profile model in one of your apps, with each of the profile fields defined, as well as a related field to
Django’s user model. For example suppose we wanted to capture bios and dates of birth for each user:

In myapp/models.py

from django.db import models

class MyProfile(models.Model):
user = models.OneToOneField("auth.User")
date_of_birth = models.DateField()
bio = models.TextField()

In settings.py

INSTALLED_APPS = (
"myapp",
"mezzanine.accounts",
Many more

)

AUTH_PROFILE_MODULE = "myapp.MyProfile"

The bio and date of birth fields will be available in the signup and update profile forms, as well as in the user’s public
profile page.

: Profile pages are automatically made available when a profile model is configured.

For more information consult the.

42 Chapter 1. Table Of Contents

https://github.com/stephenmcd/mezzanine/issues
http://twitter.com
http://mezzanine.jupo.org
http://cartridge.jupo.org
https://docs.djangoproject.com/en/1.4/topics/auth/#storing-additional-information-about-users

Mezzanine,

1.12.2

By default, Mezzanine will expose all relevant user and profile fields available in the signup and update profile forms,
and the user’s profile page. However you may want to store extra fields in user profiles, but not expose these fields to
the user. You may also want to have no profile model at all, and strip the signup and update profile forms down to only
the minimum required fields on the user model, such as username and password.

Mezzanine defines the setting ACCOUNTS_PROFILE_FORM_EXCLUDE_FIELDS which allows you to define a se-
quence of field names, for both the user and profile models, that won’t be exposed to the user in any way. Suppose
we define a DateTimeField on the profile model called signup_date which we don’t want exposed. We also
might not bother asking the user for their first and last name, which are fields defined by Django’s user model. In our
settings.py module we would define:

ACCOUNTS_PROFILE_FORM_EXCLUDE_FIELDS = (
"first_name",
"last_name",
"signup_date",

)

If you don’t want to expose the username field to the user, Mezzanine provides the setting
ACCOUNTS_NO_USERNAME, which when set to True, will expose the email field as the sole login for the
user.

1.12.3

By default, with mezzanine.accounts installed, any public visitor to the site can sign up for an account and will
be logged in after signup. However you may wish to validate that new accounts are only created by real people with
real email addresses. To enable this, Mezzanine provides the setting ACCOUNTS_VERIFICATION_REQUIRED,
which when set to True, will send new user an email with a verification link that they must click on, in order to
activate their account.

1.12.4

You may also wish to manually activate newly created public accounts. To enable this, Mezzanine provides the
setting ACCOUNTS_APPROVAL_REQUIRED, which when set to True, will set newly created accounts as inactive,
requiring a staff member to activate each account in the admin interface. A list of email addresses can be configured
in the admin settings interface, which will then be notified by email each time a new account is created and requires
activation. Users are then sent a notification when their accounts are activated by a staff member.

1.13

Mezzanine provides a built-in search engine that allows site visitors to search across different types of content. It
includes several tools that enable developers to adjust the scope of the site search. It also includes a Search API to
programmatically interact with the search engine, customize the way the search engine accesses different types of
content, and perform search queries that are broken down and used to query models for results.

1.13.1

Developers can easily customize the scope of the searches via the {% search_form %} template tag. A default
list of searchable models can be specified in the SEARCH_MODEL_CHOICES setting. Only models that subclass

1.13. Search Engine 43

Mezzanine,

mezzanine.core.models.Displayable should be used. In addition, the actual HTML form can be cus-
tomized in the includes/search_form.html template.

: In SEARCH_MODEL_CHOICES and {% search_form %}, all model names must be strings in the format
app_label.model_name. These models can be part of Mezzanine’s core, or part of third party applications.
However, all these model must subclass Page or Displayable.

Using {% search_form "all" %} will render a search form with a dropdown menu, letting the user choose on
what type of content the search will be performed. The dropdown will be populated with all of the models found in
SEARCH_MODEL_CHOICES (default: pages and blog posts, with products added if Cartridge is installed).

By passing a sequence of space-separated models to the tag, only those models will be made available as choices to
the user. For example, to offer search for only the Page and Product models (provided Cartridge is installed), you
can use: {% search_form "pages.Page shop.Product" %}.

If you don’t want to provide users with a dropdown menu, you can limit the search scope to a single model, by passing
the model name as a parameter. For example, to create a blog-only search form, you can use {% search_form
"blog.BlogPost" %}.

If no parameter is passed to {% search_form %}, no drop-down will be provided, and the search will be per-
formed on all models defined in the SEARCH_MODEL_CHOICES setting.

Finally, by setting SEARCH_MODEL_CHOICES to None, the search form will not contain a drop-down, but in this
case all models that subclass Displayable will be automatically searched.

1.13.2

The main search API is provided by mezzanine.core.managers.SearchableManager. This is a Django
model manager that provides a custom search method. Adding search functionality to any model is as simple as
using the SearchableManager as a manager for your model.

: By following the previous example outlined in Creating Custom Content Types no extra work is re-
quired to have your custom content included in search queries, as the default search functionality in Mez-
zanine (defined in mezzanine.core.views.search) automatically covers any models that inherit from
mezzanine.pages.models.Page or mezzanine.core.models.Displayable.

In its most simple form, the search method takes a single string argument containing a search query and returns a
Django queryset representing the results. For example, to search for all pages using the term plans prices projects:

from mezzanine.pages.models import Page

results = Page.objects.search("plans prices projects")

It’s also possible to explicitly control which fields will be used for the search. For example to search Page.title
and Page.content only:

from mezzanine.pages.models import Page

query = "plans prices projects"
search_fields = ("title", "content")
results = Page.objects.search(query, search_fields=search_fields)

If search_fields is not provided in the call to search, the fields used will be the default fields speci-
fied for the model. These are specified by providing a search_fields attribute on any model that uses the
SearchableManager. For example, if we wanted to add search capabilities to our GalleryImage model from
the previous example in Creating Custom Content Types:

44 Chapter 1. Table Of Contents

Mezzanine,

from django.db import models
from mezzanine.pages.models import Page
from mezzanine.core.managers import SearchableManager

class Gallery(Page):
pass

Added the title and description fields here for the search example.
class GalleryImage(models.Model):

gallery = models.ForeignKey("Gallery")
title = models.CharField("Title", max_length=100)
description = models.CharField("Description", max_length=1000)
image = models.ImageField(upload_to="galleries")

objects = SearchableManager()
search_fields = ("title", "description")

: If search_fields are not specified using any of the approaches above, then all CharField and TextField
fields defined on the model are used. This isn’t the case for Page subclasses though, since the Page model
defines a search_fields attribute which your subclass will also contain, so you’ll need to explicitly define
search_fields yourself.

1.13.3

By default, results are ordered by the number of matches found within the fields searched. It is possible to control
the relative weight of a match found within one field over a match found in another field. Given the first example of
searching Page instances, you might decide that a match within the title field is worth 5 times as much as a match
in the description field. These relative weights can be defined in the same fashion as outlined above for defining
the fields to be used in a search by using a slightly different format for the search_fields argument:

from mezzanine.pages.models import Page

query = "plans prices projects"
search_fields = {"title": 5, "content": 1}
results = Page.objects.search(query, search_fields=search_fields)

As shown, a dictionary or mapping sequence can be used to associate weights to fields in any of the cases described
above where search_fields can be defined.

1.13.4

So far we’ve looked at how to search across a single model, but what if we want to search across different types of
models at once? This is possible through the use of abstract models. SearchableManager is designed so that if
it is accessed directly through an abstract model, it will search across every model that subclasses the abstract model.
This makes it possible to group together different types of models for the purpose of combined search. Continuing on
from our GalleryImage example, suppose we also have a Document model containing files uploaded and that we
wanted a combined search across these models which could both be conceptually defined as assets. We would then go
ahead and create an abstract model called Asset for the sake of grouping these together for search:

class Asset(models.Model):
title = models.CharField("Title", max_length=100)
description = models.CharField("Title", max_length=1000)

objects = SearchableManager()

1.13. Search Engine 45

Mezzanine,

search_fields = ("title", "description")

class Meta:
abstract = True

class GalleryImage(Asset):
gallery = models.ForeignKey("Gallery")
image = models.ImageField(upload_to="galleries")

class Document(Asset):
image = models.FileField(upload_to="documents")

By accessing SearchableManager directly via the Asset abstract model we can search across the
GalleryImage and Document models at once:

>>> Asset.objects.search("My")
[<GalleryImage: My Image 1>, <Document: My Doc>, <GalleryImage: My Image 2>]

: It was mentioned earlier that the search method returns a Django queryset meaning that you can then chain
together further queryset methods onto the result. However when searching across heterogeneous models via an
abstract model, this is not the case and the result is a list of model instances.

Also of importance is the SEARCH_MODEL_CHOICES setting mentioned above. When searching across
heterogeneous models via an abstract model, the models searched will only be used if they are defined
within the SEARCH_MODEL_CHOICES setting, either explicitly, or implicitly by a model’s parent existing in
SEARCH_MODEL_CHOICES.

1.13.5

When a call to SearchableManager.search is performed, the query entered is processed through several steps
until it is translated into a Django queryset. By default the query is broken up into keywords, so the query plans prices
projects would return results that contain any of the words plans or prices or projects.

The query can contain several special operators which allow for this behaviour to be controlled further. Quotes around
exact phrases will ensure that the phrase is searched for specifically, for example the query “plans prices” projects
will return results matching the exact phrase plans prices or the word projects, in contrast to the previous example.

You can also prefix both words and phrases with + or - symbols. The + symbol will ensure the word or phrase is
contained in all results, and the - symbol will ensure that no results will be returned containing the word or phrase.
For example the query +”plans prices” -projects would return results that must contain the phrase plans prices and
must not contain the word projects.

Once the query has been parsed into words and phrases to be included or excluded, a second step is performed where
the query is stripped of common words know as stop words. These are common words such as and, the or like that
are generally not meaningful and cause irrelevant results to be returned. The list of stop words is stored in the setting
STOP_WORDS as described in the Configuration section.

1.14

Mezzanine provides a central system for defining settings within your project and applications that can then be edited
by admin users. The package mezzanine.conf contains the models for storing editable settings in the database as
well as the functions for registering and loading these settings throughout your project.

46 Chapter 1. Table Of Contents

Mezzanine,

1.14.1

Settings are defined by creating a module named defaults.py inside one or more of the applications defined in
your project’s settings.INSTALLED_APPS setting. Inside your defaults.py module you then call the func-
tion mezzanine.conf.register_setting for each setting you want to define which takes several keyword
arguments:

• name: The name of the setting.

• description: The description of the setting.

• editable: If True, the setting will be editable via the admin.

• default: The default value of the setting.

• choices: A list of choices the user can select from when the setting is editable.

• append: If registering an existing setting, the default value given will be appended to the current.

: For settings registered with editable as True, currently only strings, integers/floats and boolean values are
supported for the default value.

For example suppose we had a authors application and we wanted to create a setting that controls the number of
books displayed per author page, we would define the following in authors.defaults:

from mezzanine.conf import register_setting

register_setting(
name="AUTHORS_BOOKS_PER_PAGE",
description="The number of books to show per author page.",
editable=True,
default=10,

)

1.14.2

Mezzanine provides a settings object via mezzanine.conf.settings in a similar way to Django’s
django.conf.settings. This settings object contains each of the settings registered above using their names as
attributes. The settings object also contains the method use_editable which when called will cause the settings
object to reload editable settings from the database the next time an editable setting is accessed. Continuing on from
our previous example, suppose we have a view for photos:

from django.shortcuts import render
from mezzanine.conf import settings
from .models import Book

def books_view(request):
settings.use_editable()
books = Book.objects.all()[:settings.AUTHORS_BOOKS_PER_PAGE]
return render(request, "books.html", {"books": books})

When defining editable settings, care should be taken when considering where in your project the setting will be used.
For example if a setting is used in a urlpattern or the creation of a model class it would only be read when your
site is first loaded, and therefore having it change at a later point by an admin user would not have any effect without
reloading your entire project. In the snippet above by calling settings.use_editable() within the view, the
value of the setting being accessed is loaded each time the view is run. This ensures that if the value of the setting has
been changed by an admin user it will be reflected on the website.

1.14. Configuration 47

Mezzanine,

: It’s also important to realize that with any settings flagged as editable, defining a value for these in your project’s
settings.py will only serve to provide their default values. Once editable settings are modified via the admin,
their values stored in the database will always be used.

1.14.3

Mezzanine’s settings object integrates with Django’s settings object in a couple of ways.

Firstly it’s possible to override the default value for any setting defined using
mezzanine.conf.register_setting by adding its name and value as a regular setting to your project’s
settings module. This is especially useful when any of your project’s INSTALLED_APPS (including Mezzanine
itself) register settings that aren’t editable and you want to override these settings without modifying the application
that registered them.

Secondly it’s possible to access any of the settings defined by Django or your project’s settings module via Mezzanine’s
settings object in the same way you would use Django’s settings object. This allows for a single access point for all
settings regardless of how they are defined.

1.14.4

Mezzanine defines the following settings:

ACCOUNTS_APPROVAL_EMAILS

A comma separated list of email addresses that will receive an email notification each time a new account is created
that requires approval.

Default: ’’

ACCOUNTS_APPROVAL_REQUIRED

If True, when users create an account, they will not be enabled by default and a staff member will need to activate
their account in the admin interface.

Default: False

ACCOUNTS_MIN_PASSWORD_LENGTH

Minimum length for passwords

Default: 6

ACCOUNTS_NO_USERNAME

If True, the username field will be excluded from sign up and account update forms.

Default: False

48 Chapter 1. Table Of Contents

Mezzanine,

ACCOUNTS_PROFILE_FORM_CLASS

Dotted package path and class name of profile form to use for users signing up and updating their profile, when
mezzanine.accounts is installed.

Default: ’mezzanine.accounts.forms.ProfileForm’

ACCOUNTS_PROFILE_FORM_EXCLUDE_FIELDS

List of fields to exclude from the profile form.

Default: ()

ACCOUNTS_PROFILE_VIEWS_ENABLED

If True, users will have their own public profile pages.

Default: False

ACCOUNTS_VERIFICATION_REQUIRED

If True, when users create an account, they will be sent an email with a verification link, which they must click to
enable their account.

Default: False

ADD_PAGE_ORDER

A sequence of Page subclasses in the format app_label.model_name, that controls the ordering of items in the
select drop-down for adding new pages within the admin page tree interface.

Default: (’pages.RichTextPage’,)

ADMIN_MENU_ORDER

Controls the ordering and grouping of the admin menu.

Default: ((’Content’, (’pages.Page’, ’blog.BlogPost’, ’generic.ThreadedComment’,
(’Media Library’, ’fb_browse’))), (’Site’, (’sites.Site’,
’redirects.Redirect’, ’conf.Setting’)), (’Users’, (’auth.User’,
’auth.Group’)))

ADMIN_REMOVAL

Unregister these models from the admin.

Default: ()

ADMIN_THUMB_SIZE

Size of thumbnail previews for image fields in the admin interface.

Default: ’24x24’

1.14. Configuration 49

Mezzanine,

AKISMET_API_KEY

Key for spam filtering service. Used for filtering comments and forms.

Default: ’’

BITLY_ACCESS_TOKEN

Access token for URL shortening service.

Default: ’’

BLOG_POST_PER_PAGE

Number of blog posts shown on a blog listing page.

Default: 5

BLOG_RSS_LIMIT

Number of most recent blog posts shown in the RSS feed. Set to None to display all blog posts in the RSS feed.

Default: 20

BLOG_SLUG

Slug of the page object for the blog.

Default: ’blog’

BLOG_URLS_DATE_FORMAT

A string containing the value year, month, or day, which controls the granularity of the date portion in the URL
for each blog post. Eg: year will define URLs in the format /blog/yyyy/slug/, while day will define URLs with the
format /blog/yyyy/mm/dd/slug/. An empty string means the URLs will only use the slug, and not contain any portion
of the date at all.

Default: ’’

BLOG_USE_FEATURED_IMAGE

Enable featured images in blog posts

Default: False

CACHE_SET_DELAY_SECONDS

Mezzanine’s caching uses a technique know as mint caching. This is where the requested expiry for a cache entry is
stored with the cache entry in cache, and the real expiry used has the CACHE_SET_DELAY added to it. Then on a
cache get, the store expiry is checked, and if it has passed, the cache entry is set again, and no entry is returned. This
tries to ensure that cache misses never occur, and if many clients were to get a cache miss at once, only one would
actually need to re-generated the cache entry.

50 Chapter 1. Table Of Contents

http://akismet.com
http://bit.ly

Mezzanine,

Default: 30

COMMENTS_ACCOUNT_REQUIRED

If True, users must log in to comment.

Default: False

COMMENTS_DEFAULT_APPROVED

If True, built-in comments are approved by default.

Default: True

COMMENTS_DISQUS_API_PUBLIC_KEY

Public key for developer API

Default: ’’

COMMENTS_DISQUS_API_SECRET_KEY

Secret key for developer API

Default: ’’

COMMENTS_DISQUS_SHORTNAME

Shortname for the comments service.

Default: ’’

COMMENTS_NOTIFICATION_EMAILS

A comma separated list of email addresses that will receive an email notification each time a new comment is posted
on the site.

Default: ’’

COMMENTS_NUM_LATEST

Number of latest comments shown in the admin dashboard.

Default: 5

COMMENTS_REMOVED_VISIBLE

If True, comments that have removed checked will still be displayed, but replaced with a removed message.

Default: True

1.14. Configuration 51

http://disqus.com
http://disqus.com
http://disqus.com

Mezzanine,

COMMENTS_UNAPPROVED_VISIBLE

If True, comments that have is_public unchecked will still be displayed, but replaced with a waiting to be
approved message.

Default: True

COMMENTS_USE_RATINGS

If True, comments can be rated.

Default: True

COMMENT_FILTER

Dotted path to the function to call on a comment’s value before it is rendered to the template.

Default: None

DASHBOARD_TAGS

A three item sequence, each containing a sequence of template tags used to render the admin dashboard.

Default: ((’blog_tags.quick_blog’, ’mezzanine_tags.app_list’),
(’comment_tags.recent_comments’,), (’mezzanine_tags.recent_actions’,))

DEVICE_DEFAULT

Device specific template sub-directory to use as the default device.

Default: ’’

DEVICE_USER_AGENTS

Mapping of device specific template sub-directory names to the sequence of strings that may be found in their user
agents.

Default: ((’mobile’, (’2.0 MMP’, ’240x320’, ’400X240’, ’AvantGo’, ’BlackBerry’,
’Blazer’, ’Cellphone’, ’Danger’, ’DoCoMo’, ’Elaine/3.0’, ’EudoraWeb’,
’Googlebot-Mobile’, ’hiptop’, ’IEMobile’, ’KYOCERA/WX310K’, ’LG/U990’,
’MIDP-2.’, ’MMEF20’, ’MOT-V’, ’NetFront’, ’Newt’, ’Nintendo Wii’, ’Nitro’,
’Nokia’, ’Opera Mini’, ’Palm’, ’PlayStation Portable’, ’portalmmm’,
’Proxinet’, ’ProxiNet’, ’SHARP-TQ-GX10’, ’SHG-i900’, ’Small’, ’SonyEricsson’,
’Symbian OS’, ’SymbianOS’, ’TS21i-10’, ’UP.Browser’, ’UP.Link’, ’webOS’,
’Windows CE’, ’WinWAP’, ’YahooSeeker/M1A1-R2D2’, ’iPhone’, ’iPod’, ’Android’,
’BlackBerry9530’, ’LG-TU915 Obigo’, ’LGE VX’, ’webOS’, ’Nokia5800’)),)

EMAIL_FAIL_SILENTLY

If True, failures to send email will happen silently, otherwise an exception is raised. Defaults to settings.DEBUG.

Default: True

52 Chapter 1. Table Of Contents

Mezzanine,

EXTRA_MODEL_FIELDS

A sequence of fields that will be injected into Mezzanine’s (or any library’s) models. Each item in the sequence
is a four item sequence. The first two items are the dotted path to the model and its field name to be added, and
the dotted path to the field class to use for the field. The third and fourth items are a sequence of positional args
and a dictionary of keyword args, to use when creating the field instance. When specifying the field class, the path
django.models.db. can be omitted for regular Django model fields.

Default: ()

FORMS_CSV_DELIMITER

Char to use as a field delimiter when exporting form responses as CSV.

Default: ’,’

FORMS_EXTRA_FIELDS

Extra field types for the forms app. Should contain a sequence of three-item sequences, each containing the ID, dotted
import path for the field class, and field name, for each custom field type. The ID is simply a numeric constant for the
field, but cannot be a value already used, so choose a high number such as 100 or greater to avoid conflicts.

Default: ()

FORMS_FIELD_MAX_LENGTH

Max length allowed for field values in the forms app.

Default: 2000

FORMS_LABEL_MAX_LENGTH

Max length allowed for field labels in the forms app.

Default: 200

FORMS_UPLOAD_ROOT

Absolute path for storing file uploads for the forms app.

Default: ’’

FORMS_USE_HTML5

If True, website forms will use HTML5 features.

Default: False

GOOGLE_ANALYTICS_ID

Google Analytics ID ()

Default: ’’

1.14. Configuration 53

http://www.google.com/analytics/

Mezzanine,

HOST_THEMES

A sequence mapping host names to themes, allowing different templates to be served per HTTP host. Each item in
the sequence is a two item sequence, containing a host such as othersite.example.com, and the name of an
importable Python package for the theme. If the host is matched for a request, the templates directory inside the theme
package will be first searched when loading templates.

Default: ()

INLINE_EDITING_ENABLED

If True, front-end inline editing will be enabled.

Default: True

JQUERY_FILENAME

Name of the jQuery file found in mezzanine/core/static/mezzanine/js/

Default: ’jquery-1.7.1.min.js’

JQUERY_UI_FILENAME

Name of the jQuery UI file found in mezzanine/core/static/mezzanine/js/

Default: ’jquery-ui-1.9.1.custom.min.js’

MAX_PAGING_LINKS

Max number of paging links to display when paginating.

Default: 10

MEDIA_LIBRARY_PER_SITE

If True, each site will use its own directory within the filebrowser media library.

Default: False

OWNABLE_MODELS_ALL_EDITABLE

Models that subclass Ownable and use the OwnableAdmin have their admin change-list records filtered
down to records owned by the current user. This setting contains a sequence of models in the format
app_label.object_name, that when subclassing Ownable, will still show all records in the admin change-
list interface, regardless of the current user.

Default: ()

54 Chapter 1. Table Of Contents

Mezzanine,

PAGES_PUBLISHED_INCLUDE_LOGIN_REQUIRED

If True, pages with login_required checked will still be listed in menus and search results, for unauthenticated
users. Regardless of this setting, when an unauthenticated user accesses a page with login_required checked,
they’ll be redirected to the login page.

Default: False

PAGE_MENU_TEMPLATES

A sequence of templates used by the page_menu template tag. Each item in the sequence is a three item sequence,
containing a unique ID for the template, a label for the template, and the template path. These templates are then
available for selection when editing which menus a page should appear in. Note that if a menu template is used that
doesn’t appear in this setting, all pages will appear in it.

Default: ((1, ’Top navigation bar’, ’pages/menus/dropdown.html’), (2, ’Left-hand
tree’, ’pages/menus/tree.html’), (3, ’Footer’, ’pages/menus/footer.html’))

PAGE_MENU_TEMPLATES_DEFAULT

A sequence of IDs from the PAGE_MENU_TEMPLATES setting that defines the default menu templates selected when
creating new pages. By default all menu templates are selected. Set this setting to an empty sequence to have no
templates selected by default.

Default: None

RATINGS_ACCOUNT_REQUIRED

If True, users must log in to rate content such as blog posts and comments.

Default: False

RATINGS_RANGE

A sequence of integers that are valid ratings.

Default: [1, 2, 3, 4, 5]

RICHTEXT_ALLOWED_ATTRIBUTES

List of HTML attributes that won’t be stripped from RichTextField instances.

Default: (’abbr’, ’accept’, ’accept-charset’, ’accesskey’, ’action’, ’align’,
’alt’, ’axis’, ’border’, ’cellpadding’, ’cellspacing’, ’char’, ’charoff’,
’charset’, ’checked’, ’cite’, ’class’, ’clear’, ’cols’, ’colspan’, ’color’,
’compact’, ’coords’, ’datetime’, ’dir’, ’disabled’, ’enctype’, ’for’, ’frame’,
’headers’, ’height’, ’href’, ’hreflang’, ’hspace’, ’id’, ’ismap’, ’label’,
’lang’, ’longdesc’, ’maxlength’, ’media’, ’method’, ’multiple’, ’name’,
’nohref’, ’noshade’, ’nowrap’, ’prompt’, ’readonly’, ’rel’, ’rev’, ’rows’,
’rowspan’, ’rules’, ’scope’, ’selected’, ’shape’, ’size’, ’span’, ’src’,
’start’, ’style’, ’summary’, ’tabindex’, ’target’, ’title’, ’type’, ’usemap’,
’valign’, ’value’, ’vspace’, ’width’, ’xml:lang’)

1.14. Configuration 55

Mezzanine,

RICHTEXT_ALLOWED_STYLES

List of inline CSS styles that won’t be stripped from RichTextField instances.

Default: (’margin-top’, ’margin-bottom’, ’margin-left’, ’margin-right’, ’float’,
’vertical-align’, ’border’, ’margin’)

RICHTEXT_ALLOWED_TAGS

List of HTML tags that won’t be stripped from RichTextField instances.

Default: (’a’, ’abbr’, ’acronym’, ’address’, ’area’, ’b’, ’bdo’, ’big’,
’blockquote’, ’br’, ’button’, ’caption’, ’center’, ’cite’, ’code’, ’col’,
’colgroup’, ’dd’, ’del’, ’dfn’, ’dir’, ’div’, ’dl’, ’dt’, ’em’, ’fieldset’,
’font’, ’form’, ’h1’, ’h2’, ’h3’, ’h4’, ’h5’, ’h6’, ’hr’, ’i’, ’img’, ’input’,
’ins’, ’kbd’, ’label’, ’legend’, ’li’, ’map’, ’men’, ’ol’, ’optgroup’,
’option’, ’p’, ’pre’, ’q’, ’s’, ’samp’, ’select’, ’small’, ’span’, ’strike’,
’strong’, ’sub’, ’sup’, ’table’, ’tbody’, ’td’, ’textarea’, ’tfoot’, ’th’,
’thead’, ’tr’, ’tt’, ’’, ’ul’, ’var’, ’wbr’)

RICHTEXT_FILTERS

List of dotted paths to functions, called in order, on a RichTextField value before it is rendered to the template.

Default: ()

RICHTEXT_FILTER_LEVEL

Do not change this setting unless you know what you’re doing.

When content is saved in a Rich Text (WYSIWYG) field, unsafe HTML tags and attributes are stripped from the
content to protect against staff members intentionally adding code that could be used to cause problems, such as
changing their account to a super-user with full access to the system.

This setting allows you to change the level of filtering that occurs. Setting it to low will allow certain extra tags to be
permitted, such as those required for embedding video. While these tags are not the main candidates for users adding
malicious code, they are still considered dangerous and could potentially be mis-used by a particularly technical user,
and so are filtered out when the filtering level is set to high.

Setting the filtering level to no filtering, will disable all filtering, and allow any code to be entered by staff members,
including script tags.

Choices: High: 1, Low (allows video, iframe, Flash, etc): 2, No filtering: 3

Default: 1

RICHTEXT_WIDGET_CLASS

Dotted package path and class name of the widget to use for the RichTextField.

Default: ’mezzanine.core.forms.TinyMceWidget’

56 Chapter 1. Table Of Contents

Mezzanine,

SEARCH_MODEL_CHOICES

Sequence of models that will be provided by default as choices in the search form. Each model should be in the format
app_label.model_name. Only models that subclass mezzanine.core.models.Displayable should be
used.

Default: (’pages.Page’, ’blog.BlogPost’)

SEARCH_PER_PAGE

Number of results shown in the search results page.

Default: 10

SITE_PREFIX

A URL prefix for mounting all of Mezzanine’s urlpatterns under. When using this, you’ll also need to man-
ually apply it to your project’s root urls.py module. The root urls.py module provided by Mezzanine’s
mezzanine-project command contains an example of this towards its end.

Default: ’’

SITE_TAGLINE

A tag line that will appear at the top of all pages.

Default: ’An open source content management platform.’

SITE_TITLE

Title that will display at the top of the site, and be appended to the content of the HTML title tags on every page.

Default: ’Mezzanine’

SLUGIFY

Dotted Python path to the callable for converting strings into URL slugs. Defaults to
mezzanine.utils.urls.slugify_unicode which allows for non-ascii URLs. Change to
django.template.defaultfilters.slugify to use Django’s slugify function, or something of your own
if required.

Default: ’mezzanine.utils.urls.slugify_unicode’

SPAM_FILTERS

Sequence of dotted Python paths to callable functions used for checking posted content (such as forms or comments) is
spam. Each function should accept three arguments: the request object, the form object, and the URL that was posted
from. Defaults to mezzanine.utils.views.is_spam_akismet which will use the spam
filtering service when the AKISMET_API_KEY setting is configured.

Default: (’mezzanine.utils.views.is_spam_akismet’,)

1.14. Configuration 57

http://akismet.com

Mezzanine,

SSL_ENABLED

If True, users will be automatically redirected to HTTPS for the URLs specified by the
SSL_FORCE_URL_PREFIXES setting.

Default: False

SSL_FORCED_PREFIXES_ONLY

If True, only URLs specified by the SSL_FORCE_URL_PREFIXES setting will be accessible over SSL, and all
other URLs will be redirected back to HTTP if accessed over HTTPS.

Default: True

SSL_FORCE_HOST

Host name that the site should always be accessed via that matches the SSL certificate.

Default: ’’

SSL_FORCE_URL_PREFIXES

Sequence of URL prefixes that will be forced to run over SSL when SSL_ENABLED is True. i.e. (‘/admin’, ‘/exam-
ple’) would force all URLs beginning with /admin or /example to run over SSL.

Default: (’/admin’, ’/account’)

STOP_WORDS

List of words which will be stripped from search queries.

Default: (’a’, ’about’, ’above’, ’above’, ’across’, ’after’, ’afterwards’,
’again’, ’against’, ’all’, ’almost’, ’alone’, ’along’, ’already’, ’also’,
’although’, ’always’, ’am’, ’among’, ’amongst’, ’amoungst’, ’amount’,
’an’, ’and’, ’another’, ’any’, ’anyhow’, ’anyone’, ’anything’, ’anyway’,
’anywhere’, ’are’, ’around’, ’as’, ’at’, ’back’, ’be’, ’became’, ’because’,
’become’, ’becomes’, ’becoming’, ’been’, ’before’, ’beforehand’, ’behind’,
’being’, ’below’, ’beside’, ’besides’, ’between’, ’beyond’, ’bill’, ’both’,
’bottom’, ’but’, ’by’, ’call’, ’can’, ’cannot’, ’cant’, ’co’, ’con’, ’could’,
’couldnt’, ’cry’, ’de’, ’describe’, ’detail’, ’do’, ’done’, ’down’, ’due’,
’during’, ’each’, ’eg’, ’eight’, ’either’, ’eleven’, ’else’, ’elsewhere’,
’empty’, ’enough’, ’etc’, ’even’, ’ever’, ’every’, ’everyone’, ’everything’,
’everywhere’, ’except’, ’few’, ’fifteen’, ’fifty’, ’fill’, ’find’, ’fire’,
’first’, ’five’, ’for’, ’former’, ’formerly’, ’forty’, ’found’, ’four’,
’from’, ’front’, ’full’, ’further’, ’get’, ’give’, ’go’, ’had’, ’has’,
’hasnt’, ’have’, ’he’, ’hence’, ’her’, ’here’, ’hereafter’, ’hereby’,
’herein’, ’hereupon’, ’hers’, ’herself’, ’him’, ’himself’, ’his’, ’how’,
’however’, ’hundred’, ’ie’, ’if’, ’in’, ’inc’, ’indeed’, ’interest’, ’into’,
’is’, ’it’, ’its’, ’itself’, ’keep’, ’last’, ’latter’, ’latterly’, ’least’,
’less’, ’ltd’, ’made’, ’many’, ’may’, ’me’, ’meanwhile’, ’might’, ’mill’,
’mine’, ’more’, ’moreover’, ’most’, ’mostly’, ’move’, ’much’, ’must’, ’my’,
’myself’, ’name’, ’namely’, ’neither’, ’never’, ’nevertheless’, ’next’,
’nine’, ’no’, ’nobody’, ’none’, ’noone’, ’nor’, ’not’, ’nothing’, ’now’,
’nowhere’, ’of’, ’off’, ’often’, ’on’, ’once’, ’one’, ’only’, ’onto’, ’or’,

58 Chapter 1. Table Of Contents

Mezzanine,

’other’, ’others’, ’otherwise’, ’our’, ’ours’, ’ourselves’, ’out’, ’over’,
’own’, ’part’, ’per’, ’perhaps’, ’please’, ’put’, ’rather’, ’re’, ’same’,
’see’, ’seem’, ’seemed’, ’seeming’, ’seems’, ’serious’, ’several’, ’she’,
’should’, ’show’, ’side’, ’since’, ’sincere’, ’six’, ’sixty’, ’so’, ’some’,
’somehow’, ’someone’, ’something’, ’sometime’, ’sometimes’, ’somewhere’,
’still’, ’such’, ’system’, ’take’, ’ten’, ’than’, ’that’, ’the’, ’their’,
’them’, ’themselves’, ’then’, ’thence’, ’there’, ’thereafter’, ’thereby’,
’therefore’, ’therein’, ’thereupon’, ’these’, ’they’, ’thickv’, ’thin’,
’third’, ’this’, ’those’, ’though’, ’three’, ’through’, ’throughout’, ’thr’,
’thus’, ’to’, ’together’, ’too’, ’top’, ’toward’, ’towards’, ’twelve’,
’twenty’, ’two’, ’un’, ’under’, ’until’, ’up’, ’upon’, ’us’, ’very’, ’via’,
’was’, ’we’, ’well’, ’were’, ’what’, ’whatever’, ’when’, ’whence’, ’whenever’,
’where’, ’whereafter’, ’whereas’, ’whereby’, ’wherein’, ’whereupon’,
’wherever’, ’whether’, ’which’, ’while’, ’whither’, ’who’, ’whoever’, ’whole’,
’whom’, ’whose’, ’why’, ’will’, ’with’, ’within’, ’without’, ’would’, ’yet’,
’you’, ’your’, ’yours’, ’yourself’, ’yourselves’, ’the’)

TAG_CLOUD_SIZES

Number of different sizes for tags when shown as a cloud.

Default: 4

TEMPLATE_ACCESSIBLE_SETTINGS

Sequence of setting names available within templates.

Default: (’ACCOUNTS_APPROVAL_REQUIRED’, ’ACCOUNTS_VERIFICATION_REQUIRED’,
’BITLY_ACCESS_TOKEN’, ’BLOG_USE_FEATURED_IMAGE’, ’COMMENTS_DISQUS_SHORTNAME’,
’COMMENTS_NUM_LATEST’, ’COMMENTS_DISQUS_API_PUBLIC_KEY’, ’COMMENTS_DISQUS_API_SECRET_KEY’,
’COMMENTS_USE_RATINGS’, ’DEV_SERVER’, ’FORMS_USE_HTML5’, ’GRAPPELLI_INSTALLED’,
’GOOGLE_ANALYTICS_ID’, ’JQUERY_FILENAME’, ’LOGIN_URL’, ’LOGOUT_URL’,
’SITE_TITLE’, ’SITE_TAGLINE’)

THUMBNAILS_DIR_NAME

Directory name to store thumbnails in, that will be created relative to the original image’s directory.

Default: ’.thumbnails’

TINYMCE_SETUP_JS

URL for the JavaScript file (relative to STATIC_URL) that handles configuring TinyMCE when the default
RICHTEXT_WIDGET_CLASS is used.

Default: ’mezzanine/js/tinymce_setup.js’

TWITTER_ACCESS_TOKEN_KEY

Default: ’’

1.14. Configuration 59

Mezzanine,

TWITTER_ACCESS_TOKEN_SECRET

Default: ’’

TWITTER_CONSUMER_KEY

Default: ’’

TWITTER_CONSUMER_SECRET

Default: ’’

TWITTER_DEFAULT_NUM_TWEETS

Number of tweets to display in the default Twitter feed.

Default: 3

TWITTER_DEFAULT_QUERY

Twitter query to use for the default query type.

Note: Once you change this from the default, you’ll need to configure each of the oAuth consumer/access key/secret
settings. Please refer to for more information on creating an application and acquiring these
settings.

Default: ’from:stephen_mcd mezzanine’

TWITTER_DEFAULT_QUERY_TYPE

Type of query that will be used to retrieve tweets for the default Twitter feed.

Choices: User: user, List: list, Search: search

Default: ’search’

UPLOAD_TO_HANDLERS

Dict mapping file field names in the format app_label.model_name.field_name to the Python dotted path
to function names that will be used for the file field’s upload_to argument.

Default: {}

USE_SOUTH

If True, the south application will be automatically added to the INSTALLED_APPS setting.

Default: True

60 Chapter 1. Table Of Contents

http://dev.twitter.com

Mezzanine,

1.15

Mezzanine has the ability to import blog posts from other blogging platforms using a.
These are the currently supported formats and their commands:

•: import_wordpress

•: import_blogger

•: import_tumblr

•: import_posterous

•: import_rss

Each command takes a Mezzanine username to assign the blog posts to as well as certain arguments specific to the
blog platform. For example to import an existing Wordpress blog:

$ python manage.py import_wordpress --mezzanine-user=username [options]

Use the --help argument to learn more about the arguments specific to each blog platform’s command. For example
you can see all options for Wordpress by running:

$ python manage.py import_wordpress --help

1.15.1

There are some known issues with HTML formatting loss - specifically where a heading tag is followed by a paragraph
tag or another block HTML element that is not typically enclosed with a <p> tag is followed by a paragraph. This
depends heavily on the originating platform and how it encodes the blog post’s copy. The import processor gets this
about 90% correct but you may need to do some quick clean up afterwards.

Generally speaking you shouldn’t be able to import your data twice. There is a check in place to either create or update
for both comments and posts as they are processed, so even if you run the importer multiple times you should only
end up with data imported once. However if you have changed any data this will be overwritten.

1.15.2

Dependencies

• Mark Pilgrim’s

The first step is to export your Wordpress data. Login to Wordpress and go to Settings -> Export. Here you
can select your filters, otherwise only published posts will be exported. Once you have saved your export file make a
note of the location you saved it to.

: It is faster to import directly from your filesystem if you can, especially if you have a large blog with lots of
comments.

The next step is to run the import_wordpress command where the url argument contains the path or URL to
your export file:

$ python manage.py import_wordpress --mezzanine-user=.. --url=[path|URL]

1.15. Importing External Blogs 61

http://docs.djangoproject.com/en/dev/howto/custom-management-commands/
http://wordpress.org
http://blogger.com
http://tumblr.com
http://posterous.com
http://en.wikipedia.org/wiki/RSS
http://code.google.com/p/feedparser/

Mezzanine,

1.15.3

The Blogger import currently has one known limitation which is a maximum of 500 blogs or 500 comments per blog
that can be imported. If you have more than this the import will still work but end up being truncated.

Dependencies

• Google’s Library

The first step is to obtain your Blogger ID. Login to Blogger and go to Settings. You’ll see that the address in your
browser end with BlogID=XXX where XXX is your Blogger ID. Make a note of this and while you’re in settings,
go to Site Feed then set Allow Blog Feeds to be Full - this will give you all your data when you run the
import.

The next step is to run the import_blogger command where the blogger-id argument contains the Blogger
ID you retrieved:

$ python manage.py import_blogger --mezzanine-user=.. --blogger-id=XXX

1.15.4

Simply run the import_tumblr command where the tumblr-user argument contains your Tumblr username:

$ python manage.py import_blogger --mezzanine-user=.. --tumblr-user=username

1.15.5

Dependencies

• Mark Pilgrim’s

Simply run the import_rss command where the rss-url argument contains the URL for your RSS feed:

$ python manage.py import_rss --mezzanine-user=.. --rss-url=url

1.15.6

Dependencies

• Kenneth Reitz’s

Simply run import_posterous command with the right params. You need to get your API key from the
API Reference:

$ python manage.py import_posterous --mezzanine-user=.. --api-token=.. --posterous-user=your_posterous_login --posterous-pass=your_posterous_password

If you have more than one blog on your posterous account check out the -posterous-host option. Be aware that
like the tumblr importer, this leaves your media assets on the Posterous servers. If you’re worried about posterous
being shut down you may want want to have a closer look at the API to actually export your media.

62 Chapter 1. Table Of Contents

http://code.google.com/p/gdata-python-client/
http://code.google.com/p/feedparser/
http://docs.python-requests.org/en/latest/index.html
https://posterous.com/api
https://posterous.com/api

Mezzanine,

1.15.7

The importer system has been designed to be extensible so that import commands can easily be added for other
blogging platforms.

Each importer’s management command is located in the mezzanine.blog.management.commands
package, and should have its module named import_type where type represents the type of im-
port the command is for. This module will then contain a class named Command which subclasses
mezzanine.blog.base.BaseImporterCommand.

The first step is to define any custom arguments the command will require using Python’s handling.

The main responsbility of the Command class is then to implement a handle_import method which handles
retrieving blog posts and comments from the particular blogging platform. The handle_import method is passed
a dictionary of options for the command. The add_post and add_comment methods should be called inside the
handle_import method, adding posts and comments respectively. The add_post method returns a post to be
used with the add_comment method. For example:

from optparse import make_option
from django.core.management.base import CommandError
from mezzanine.blog.management.base import BaseImporterCommand

class Command(BaseImporterCommand):

option_list = BaseImporterCommand.option_list + (
make_option("-s", "--some-arg-name", dest="some_arg_var",

help="Description of some-arg-name"),
)

def handle_import(self, options):
Perform the tasks that need to occur to retrieve blog posts.
We’ll use an imaginary "posts" variable that contains a list of
post dicts with keys: title, author, pub_date, tags and content.
In this example we have access to the command line argument
"some-arg-name" via "options["some_arg_var"]".
for retrieved_post in posts:

added_post = self.add_post(**retrieved_post)
Another imaginary variable to demo the API.
for retrieved_comment in comments:

self.add_comment(post=added_post, **retrieved_comment)

1.16

Below are auto-generated docs mostly covering each of the packages contained within Mezzanine that are added to
settings.INSTALLED_APPS.

1.16. Packages 63

http://docs.python.org/library/optparse.html

Mezzanine,

64 Chapter 1. Table Of Contents

Mezzanine,

1.16.1 mezzanine.boot

1.16.2 mezzanine.core

mezzanine.core.modelsmezzanine.core.managersmezzanine.core.viewsmezzanine.core.formsmezzanine.core.adminmezzanine.core.middlewaremezzanine.core.templatetags.mezzanine_tagsmezzanine.core.management.commandsmezzanine.core.requestmezzanine.core.tests

1.16.3 mezzanine.pages

mezzanine.pages.modelsmezzanine.pages.viewsmezzanine.pages.adminmezzanine.pages.middlewaremezzanine.pages.templatetags.pages_tagsmezzanine.pages.page_processors

1.16.4 mezzanine.generic

mezzanine.generic.modelsmezzanine.generic.managersmezzanine.generic.fieldsmezzanine.generic.viewsmezzanine.generic.formsmezzanine.generic.adminmezzanine.generic.templatetags.comment_tagsmezzanine.generic.templatetags.disqus_tagsmezzanine.generic.templatetags.keyword_tagsmezzanine.generic.templatetags.rating_tags

1.16.5 mezzanine.blog

mezzanine.blog.modelsmezzanine.blog.viewsmezzanine.blog.formsmezzanine.blog.adminmezzanine.blog.feedsmezzanine.blog.templatetags.blog_tagsmezzanine.blog.management.basemezzanine.blog.management.commands

1.16.6 mezzanine.accounts

mezzanine.accounts.viewsmezzanine.accounts.formsmezzanine.accounts.templatetags.accounts_tagsmezzanine.accounts.admin

1.16.7 mezzanine.forms

mezzanine.forms.modelsmezzanine.forms.formsmezzanine.forms.page_processorsmezzanine.forms.admin

1.16.8 mezzanine.galleries

mezzanine.galleries.modelsmezzanine.galleries.admin

1.16.9 mezzanine.conf

mezzanine.conf.modelsmezzanine.conf.formsmezzanine.conf.adminmezzanine.conf.context_processors

1.16.10 mezzanine.template

1.16.11 mezzanine.template.loader_tags

1.16.12 mezzanine.twitter

mezzanine.twitter.modelsmezzanine.twitter.managersmezzanine.twitter.templatetags.twitter_tagsmezzanine.twitter.management.commands

1.16.13 mezzanine.utils

1.17

1.17.1

• Stephen McDonald

1.17. Colophon 65

Mezzanine,

• Lex Hider

• Van Lindberg

• Timur Bobrus

• Toby White

• Eric Floehr

• Tom von Schwerdtner

• Brad Montgomery

• Andrew Fisher

• Carlos David Marrero

• Lee Matos

• Josh de Blank

• Dominique Guardiola Falco

• Michał Oleniec

• John Campbell

• Andrew Grigorev

• Audrey Roy

• Josh Cartmell

• Osiloke Emoekpere

• Eduardo Gutierrez

• Rich Atkinson

• Brett Clouser

• Brent Hoover

• Owen Nelson

• Zeke Harris

• Ken Bolton

• Eli Spizzichino

• Michael Delaney

• David Prusaczyk

• Alexey Makarenya

• Sebastián Ramírez Magrí

• Kevin Levenstein

• Josh Batchelor

• John Barham

• Luke Plant

• Zdeněk Softič

• Alvin Mites

66 Chapter 1. Table Of Contents

Mezzanine,

• Jason Kowaleski

• Nicola Larosa

• Anders Hofstee

• Tommy Wolber

• Chris Trengove

• Chris Smith

• Patrick Taylor

• Paolo Dinay

• Nicolas Perriault

• Aleksandr Vladimirskiy

• Thomas Wajs

• Arsenio Santos

• Dmitry Falk

• Brian Schott

• Gary Reynolds

• Maxim Sukharev

• Anton Sutton

• Kent Hauser

• Renyi Khor

• Van Nguyen

• Thomas Lockhart

• Pavel Ponomarev

• Ross Laird

• Alex Hill

• Zachary Gohr

• Edita Menclová

• Jaffa McNeill

• Kristjan Schmidt

• Yong Choi

• Milorad Pop-Tosic

• Rivo Zängov

• Vincent Rialland

• Martin Jahn

• Olav Lindekleiv

• Christopher R. Parr

• Hilton Medeiros

1.17. Colophon 67

Mezzanine,

• Yassine Elassad

• Armadillo Integración Tecnológica C.A

• Sergi Almacellas Abellana

• Enrico Tröger

• Sanjay B

• Adam Brenecki

• James Page

• Hakan Bakkalbasi

• Isaac Bythewood

• Lorin Hochstein

• Aaron Merriam

• Pedro Miguel Correia Araújo

• Kevin London

• David Novakovic

• Mark Mukherjee

• Eduardo Rivas

• Kenneth Falck

• Zean Tsoi

• Robert Moggach

• Artem Ploujnikov

• Sean Voss

• Stefan Hummert

• Penny Leach

• Andrey Shipilov

• Andre Graf

• Per Andersson

• Ulrich Wagner

• Ahmad Khayyat

• Ivan Teoh

• Thomas Jetzinger

• Grant Warren-Robertson

• Doug Evenhouse

• Matt Stevenson

• Olivier Harris

• Churkin Oleg

• Chris F Ravenscroft

68 Chapter 1. Table Of Contents

Mezzanine,

• Kenneth Love

• Gavin Wahl

• Rocky Meza

• Jonathan Potter

• David K. Hess

• skooch

• Li Yinhui

• Jackson Gothe-Snape

• Stian Prestholdt

• Wojtek Ruszczewski

• Ben Wilson

• Mahdi Bornazadeh

• Travis Nickles

• Bryden Frizzell

• Jesus Armando Anaya Orozco

• Pahaz Blinov

• Mahdi Bornazadeh

• David Lawrence

• Basil Mironenko

• Dmitry Belaventcev

• Thejaswi Puthraya

• Sachin Shende

• Sam Kingston

• José Aliste

• Marcos Scriven

• Gabe Smedresman

• Kim Tore Jensen

• Mike Wakerly

• Jeff Fein-Worton

• Petr Papoušek

• Andrey Zhukov

• Alexandre Hajjar

• Breno Uchoa

• Nar Kumar

• Tim Slot

• Andromeda Yelton

1.17. Colophon 69

Mezzanine,

• John Groszko

• Jeremie Ferry

• Eduardo S. Klein

• Jason Wong

• Romain Hardouin

• Ling Thio

• Tim Valenta

• Artem Gluvchynsky

• Dheeraj Sayala

• Antoine Catton

• Marek Wywiał

• Vinod Kurup

• Ethan Goldstine

• Henri Koivuneva

• Mehmet Özgür Bayhan

• Thomas Rega

• Deric Crago

• Cristian Ciupitu

• Danny Sag

• Troy Harvey

• Ahmet Bakan

• Ben Ledbury

• Nicole Harris

• David Winterbottom

• David Higgins

• hanchen

• John Henry

• Cornel K

• Tuk Bredsdorff

• Simon Griffee

• Markus Törnqvist

• Alyssa Welles

• Tulio Nobrega

• Ed Schofield

• Sebastian Clemens

• Alexandre Hajjar

70 Chapter 1. Table Of Contents

Mezzanine,

• Zachery Metcalf

• Tim Harton

• Daniel Lawrence

• Leo Zhu

• Hervé Cauwelier

• Adrian Carpenter

• Tye Scott

• David Tomaschik

• Denis Cornehl

• Luiz Felipe Schleder

• Neum Schmickrath

• David Sanders

• Sylvain Fankhauser

• Laurent Prodon

• Simone Federici

• Roberto Macho

• Alejandro Peralta

• Venelin Stoykov

• Samir Shah

1.17.2

Copyright (c) Stephen McDonald and individual contributors. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

1.17. Colophon 71

Mezzanine,

1.17.3

Version 3.0.8 (Feb 06, 2014)

• Use binary mode when opening the image to be copied on a remote server - Sylvain Fankhauser

• Fixed regression when validating displayable content field against published status - Stephen McDonald

• Fix static proxy handling - Stephen McDonald

• Fix string checking in page processors. Closes #931 - Stephen McDonald

• Handle the different method of importing filebrowser urls when the upstream version is installed. Closes #925 -
Stephen McDonald

• Rename account URL prefix to match Django’s by adding the plural s. Catch and redirect any old urls to the
new scheme - Sam Kingston

• Tidy up old account redirect view - Sam Kingston

• Added tests to static_proxy - Alejandro Peralta

• Handle next param in old_account_redirect - Stephen McDonald

• In Mezzanine’s runserver, also serve up static files in STATIC_ROOT - Stephen McDonald

• Bump filebrowser-safe to 0.3.2 - Stephen McDonald

• Use file.name instead of file.url for getting name of file in GalleryImage. file.name is universal accross
storages and can be used not only with. FileSystem storage but with S3 storage as well (file.name is used to.
create the url). Also with using name instead of url we will not have. problems with encoding and python
version - Venelin Stoykov

Version 3.0.7 (Feb 02, 2014)

• check if the user model is already registered. Fix usage of overwriting the UserProfileAdmin because it will be
under mezzanine.accounts in INSTALLED_APPS - Sebastian Clemens

• check django version instead of ImportError. Closes https://github.com/stephenmcd/mezzanine/issues/893
- Sebastian Clemens

• Restore comment - Sebastian Clemens

• Use space indent instead of tab - Sebastian Clemens

• Do not show the in_menus field in page admin if PAGE_MENU_TEMPLATES is empty - Laurent Prodon

• Fix admin password reset page. Closes #909 - Stephen McDonald

• Clean up PAGE_MENU_TEMPLATES check in page admin - Stephen McDonald

• Fix failing account tests for foreignkey and date/datetime fields on user profile models - Stephen McDonald

• menu: include parent page in context - Laurent Prodon

• menu: modify doc accordingly - Laurent Prodon

• Handle multiple ip addresses in mezzanine.utils.views.ip_for_request - Stephen McDonald

• Fix handling for schemeless static urls in static proxy - Stephen McDonald

• fix on python3 loads() required string found bytes <- reads(). adding .decode("utf-8") to support python3
- Simone Federici

• Fixed bug in processor_for if it receives an unicode slug - Vindio

72 Chapter 1. Table Of Contents

Mezzanine,

• Replaced unicode string for python3.x compatibility - Vindio

• Previous commit breaked test for python2.x - Vindio

• Previous commit broke test for python2.x - Vindio

• Dont show comments in blogpost list if they are not allowed - Laurent Prodon

• wrap ratings in a block in blogpost detail template - Laurent Prodon

• More Django 1.6 generic relation regressions - underlying sql has changed, returning duplicates, so apply dis-
tinct for correct results. Closes #918 - Stephen McDonald

• Fix tag cloud padding - Stephen McDonald

• Ensure filtering blog posts by keyword uses the correct content type - Stephen McDonald

• Much simpler keywords lookup fix - Stephen McDonald

• Don’t assume static proxy url param contains a host. Closes #920 - Stephen McDonald

• Added test to check that /static/ as a prefix of url is removed - Alejandro Peralta

• Fix static proxy test for Python 3 and remove fb dependency from test - Stephen McDonald

Version 3.0.6 (Jan 18, 2014)

• Don’t require specifying filebrowser urls separately in a project’s urlconf - Stephen McDonald

• import the user model from settings - Sebastian Clemens

• Improved support for determining timezone with tzlocal lib - Stephen McDonald

• New setting EMAIL_FAIL_SILENTLY for controlling the default fail_silently arg in sending email -
Stephen McDonald

Version 3.0.5 (Jan 13, 2014)

• Fix bytes/string handling in Python 3 static_proxy. Closes #866 - Stephen McDonald

• Move the file browser url to i18n patterns - Sebastian Clemens

• Use the new template tag for url generation - Sebastian Clemens

• Add a given query string to url - Sebastian Clemens

• Move jQuery setup for ajax/csrf outside of document.ready handler - Stephen McDonald

• In overextends template tag, don’t assume extends node is first in node list - Stephen McDonald

• Fix bytes/str handling in disqus SSO - Stephen McDonald

• Communicate the requirement for twitter credentials on changing the default query in the help text - Stephen
McDonald

• Slight increase to font size throughout the admin - Stephen McDonald

• Add url field type to anyFieldsDirty in dynamic_inline.js - Adrian Carpenter

• Patch all migrations to remove generic fields - these break with Django 1.6 and aren’t actually necessary with
the latest version of south - Stephen McDonald

• Added two more HTML5 input types in dynamic_inline.js - Adrian Carpenter

• dynamic_inline.js updated for HTML5 input types in Django 1.6 - Adrian Carpenter

1.17. Colophon 73

Mezzanine,

• Remove all the frozen_by_south hacks and use it to provide a warning for old migrations - Stephen Mc-
Donald

• Add some more html5 field types to dynamic inlines JavaScript - Stephen McDonald

• Update to use multiprocessing library - tyescott

• Use pytz to determine a closest matching timezone fro TIME_ZONE default - Stephen McDonald

• Have RSS/Atom feed link attribute go to homepage of site - David Tomaschik

• Don’t hard code rss link url - Stephen McDonald

• Use FieldFile.url to get full image-url in gallery. Closes #877 - Denis Cornehl

• SS: Bumped requests and requests-oauthlib versions - Sachin Shende

• Fix tuple/list setting handling. Closes #883 - Stephen McDonald

• allow <a> tags inside <button> in TinyMCE - Neum

• Add back bootstrap-extras.js. Menus stay open for a few hundred milliseconds after the cursor leaves
them and the dropdowns in the main menu are useable when the menu is collapsed - Josh Cartmell

• Relative schemes for twitter avatar urls. Closes #878 - Stephen McDonald

• Fix some failing http status code tests that need to follow redirects when multiple languages defined - Stephen
McDonald

• Make the label element optional for form fields. Labels for form fields can be disabled by setting them to an
empty string. Previously this would produce the intended result visually, but left an empty label element in the
HTML. This change causes the element to only be inserted if a label value exists - David Sanders

• Fix for uploading zip files to a homepage gallery - Jeff Fein-Worton

• Update to latest bleach/html5lib and enable for Python 3 - Stephen McDonald

• Fix admin menu app/model sorting for Python 3 - Stephen McDonald

• Bump version to 3.0.5 - Stephen McDonald

Version 3.0.4 (Dec 27, 2013)

• Shadow staticfiles runserver instead of django.core - Stephen McDonald

• Use local names for the language selector. Also dropping creation of the two variables LANGUAGES and
LANGUAGE_CODE. because they already exists - Sebastian Clemens

• Use correct indents - Sebastian Clemens

• Bump grappelli version - Stephen McDonald

• More unicode fixes - Stephen McDonald

• Correctly handle serving files under MEDIA_ROOT during development on Windows. Closes #865 - Stephen
McDonald

Version 3.0.3 (Dec 25, 2013)

• Skip randomly failing settings test on Python 3 - Stephen McDonald

• Unicode fix for gallery image descriptions from filenames - Stephen McDonald

• More gallery unicode fixes - Stephen McDonald

74 Chapter 1. Table Of Contents

Mezzanine,

• Fix some jQuery namespacing regressions in the admin - Stephen McDonald

• Bump grappelli/filebrowser versions - Stephen McDonald

Version 3.0.2 (Dec 25, 2013)

• No changes listed.

Version 3.0.1 (Dec 25, 2013)

• Fix Python 2/3 str/bytes error in cache bypass util - Stephen McDonald

Version 3.0.0 (Dec 24, 2013)

• Python 2/3 port: be conservative: no magic super() imports - Ed Schofield

• Put __future__ imports below the # encoding: utf-8 lines - Ed Schofield

• Correctly handle page slug lookups when APPEND_SLASH is False - Stephen McDonald

• disqus counts should follow the protocol of the original request, see:
http://help.disqus.com/customer/portal/articles/542119 - John Henry

• Fall back to Python 2 urllib imports if needed. * Also fix one bug triggered by passing a newstr to
urllib.unquote - Ed Schofield

• Remove obsolete with_statement import from __future__ - Ed Schofield

• Always pass a native string to first arg of 3-arg type() call in middleware.py - Ed Schofield

• Add absolute_import to prevent implicit relative import of html.py on Py2 - Ed Schofield

• Python 2/3 compatibility for types in the settings registry - Ed Schofield

• Fix a few out-of-order __future__ imports - Ed Schofield

• Python 3 compatibility: Use Django’s newer smart_text and force_text if available. -
smart_unicode and force_unicode aren’t defined in django.utils.encoding on Py3 - Ed
Schofield

• Python 3: fix arg_names lookup in FormForForm.__init__ - Ed Schofield

• Python 3 compatibility: Fix galleries/models.py: use BytesIO etc - Ed Schofield

• Add Python 3.3 to .travis.yml - Ed Schofield

• Revert “Add Python 3.3 to .travis.yml". This reverts commit
4dee3b787d040613fa632c3300a29def955ca128. Django 1.4.x doesn’t support Python 3.x, so the
.travis.yml file needs to. specify that the combination of Python 3.3 and Django 1.4.x should not
be. tested - Ed Schofield

• Change __unicode__ -> __str__ and add python_2_unicode_compatible decorator - Ed
Schofield

• Disable standard_library import hooks for pychecker - Ed Schofield

• Add future == 0.8.2 to requirements; remove dependency for setup.py - Ed Schofield

• Change future dependency to >= 0.8.2 - Ed Schofield

• Add Python 3.3 back to .travis.yml and disable tests on Py3.3 + Django 1.4 - Ed Schofield

1.17. Colophon 75

Mezzanine,

• Fix location of urlparse on Python 2 - Ed Schofield

• Add Python 3 classifier for PyPI - Ed Schofield

• Prevent UnicodeDecodeError in test run on Py2 if files in the local dir have high-bit chars. - Also remove an
extraneous import - Ed Schofield

• Python 3: import local_settings correctly from project_template.settings - Ed Schofield

• Work around Django / Python 2.x not supporting unicode cookie keys - Ed Schofield

• Change Py3-incompatible is-this-a-string type-check hack in send_mail_template - Ed Schofield

• Fix for mezzanine.utils.email imports - Ed Schofield

• Remove Django 1.4.x from .travis.yml for pull request for early testing - Ed Schofield

• import_rss and import_tumblr scripts: fix urllib imports on Py2 - Ed Schofield

• Clean up imports - Ed Schofield

• Remove all isinstance() imports (with future v0.9). - These are not needed in future v0.9 - Ed Schofield

• Handle context_data is None in PageMiddleware - Stephen McDonald

• No need to provide TEST_RUNNER in settings - Stephen McDonald

• Restore 1.6 fix for generic relations - Stephen McDonald

• Don’t use deprectaed depth arg for select_related in page_menu tag - use the built up list of subclass
models instead, as per in the admin - Stephen McDonald

• Revert “Restore 1.6 fix for generic relations.". This reverts commit
19288b896a5ccb146ae8fe8e25cde5a768079c0d. _meta.get_all_field_names() load the app
cache. This cannot be called. during the app cache loading. Those line have been posing problems as seen
in: * 19288b896a5ccb146ae8fe8e25cde5a768079c0d. * d2b68151ca936422eef3d0b7cc2a8e63f5e2d4d1. *
69acbfd8f025d2b245c4c8e8ca4d1484f0c1228d - Antoine Catton

• Fix circular import problem and keep Django 1.6 compatibility. See: *
f48390c4c8d61ca499f277f2ae1c2346262b949d. * 19288b896a5ccb146ae8fe8e25cde5a768079c0d. *
d2b68151ca936422eef3d0b7cc2a8e63f5e2d4d1. * 69acbfd8f025d2b245c4c8e8ca4d1484f0c1228d. Thank you
Gavin Wahl (gwahl at fusionbox dot com) for the solution - Antoine Catton

• Bump future version requirement to 0.9.0 - Ed Schofield

• Add Django 1.4.8 back to .travis.yml and disable tests on Py3.3 + Django 1.4.8 - Ed Schofield

• Remove some unnecessary list() calls around map() results - Ed Schofield

• Allow fab remove to run when db/user don’t exist - Stephen McDonald

• Allow multiple deployed projects with ssl in nginx conf - Stephen McDonald

• Fixed a few small spelling errors - Tuk Bredsdorff

• In set_dynamic_settings don’t convert tuple settings back to tuples if they were already a list. Closes
#821 - Stephen McDonald

• Python 3 fix - can’t compare string and int when sorting content types in page admin - Stephen McDonald

• Don’t install optional dependencies for Python 3 that aren’t yet compatible with it - Stephen McDonald

• Fix local_settings import - Stephen McDonald

• Fix string cast for file fields in thumbnail template tag - Stephen McDonald

• Overide staticfiles’ runserver command and wsgi handler during development, to allow uploaded files to be
served from within the static dir - Stephen McDonald

76 Chapter 1. Table Of Contents

Mezzanine,

• Restore some docstrings - Stephen McDonald

• Update refs to latest Django 1.4/1.5 versions - Stephen McDonald

• Fix travis - Stephen McDonald

• Add project path to search path in tests - Stephen McDonald

• Authenticate new user using a token instead of a password to support password-less configurations - Alex Hill

• If new user’s password is empty, make this explicit by calling set_unusable_password() - Alex Hill

• Only load editable settings from the database - Alex Hill

• Add a test for fixed editable settings behaviour - Alex Hill

• Load settings in a separate method, emit warnings for settings that are defined twice - Alex Hill

• Assume settings pulled from the database are UTF-8 - Alex Hill

• Remove assignment to make pyflakes happy - Alex Hill

• Adding Arkade Snowboarding - Josh Batchelor

• Remove use of from future import standard_library for now (issue #826). - This feature in
future is currently buggy. - The import was not actually needed by some modules anyway - Ed Schofield

• Remove deprecated assert methods - Stephen McDonald

• Clean up editable setting loading - Stephen McDonald

• Move special-case bytes conversion to _load method - Alex Hill

• Add test for special-case bytes conversion - Alex Hill

• Fix tests - Alex Hill

• Fix inline editing response. Closes #829 - Stephen McDonald

• Added Linktective - procmail

• Upstream update to Bootstrap 3.0.2 - Eduardo Rivas

• Update footer link to point to the Bootstrap 3 site - Eduardo Rivas

• Inline Admin: Convert editable_form.html to BS3 - Eduardo Rivas

• Make auto-generated slugs propagate. Fixes #831 - Alex Hill

• Use reverse instead of models.permalink in BlogPost.get_absolute_url - Stephen McDonald

• Allow all models subclassing Displayable to be searched by setting SEARCH_MODEL_CHOICES to None -
Stephen McDonald

• Update search engine docs - Stephen McDonald

• Fix some type handling for settings in mezzanine.conf - Stephen McDonald

• More Python 3 fixes for types in mezzanine.conf - Stephen McDonald

• Allow specifying optional left and top values to the thumbnail tag which control the centering of the thumbnail.
If non default values are used update the thumbnail name - Josh Cartmell

• Allow None to be used as a per_page arg for pagination, to bypass pagination altogther - Stephen McDonald

• Force string type names for HTML5 form fields - Stephen McDonald

• Clean up positioning code in thumbnail tag - Stephen McDonald

1.17. Colophon 77

Mezzanine,

• added three classes “left”, “middle” and “right”. these classes are used by cartridge to use the entire space in
checkout process - Sebastian Clemens

• fix on __admin_media_prefix__ about the trailing slash - Alexandre Hajjar

• Namespace jQuery in the admin pages to prevent conflicts - Zachery Metcalf

• Upstream update to Bootstrap 3.0.3 - Eduardo Rivas

• Use the new BS 3.0.3 colors for error fields - Eduardo Rivas

• Py3k compatibility fixes in two-phase rendering - Alex Hill

• Update forms.py. Added a check to see if the initial value for a field is a manager - Tim Harton

• Fixed multipleschoiceselect error with profiles - Tim Harton

• Slightly cleaner related field check in profile form - Stephen McDonald

• Fix setup - Stephen McDonald

• Add a {% block %} to .form-actions in account_form.html for Cartridge. to extend. This makes it
easier for Cartridge to insert an “Order History” button - Eduardo Rivas

• Increased margin around buttons in the user panel. Makes it look less. crammed - Eduardo Rivas

• Render form errors with a new {% errors_for %} template tag. This new tem-
plate tag accomplishes three things: - Fixes the bug of multiple form error messages
appearing when using. {% fields_for %}. This bug was intruduced in [this
commit](https://github.com/jerivas/mezzanine/commit/323660db5bee7e21358315c4e247eaa8ee77b034).
and was discovered when [migrating Cartridge to BS3](https://github.com/clemensbasti/cartridge/pull/1).
- Decouples error message rendering from form field rendering, with. the added flexibility of placing the error
messages wherever we want. - Creates a new template (includes/form_errors.html) as the single.
location to control form error rendering through all Mezzanine and. Cartridge - Eduardo Rivas

• Admin href disqus recent comments to https or http via double slash. Changed how the disqus widget in the
admin panel loads its recent. comments. This will fix any errors for loading insecure content - Daniel Lawrence

• verbose_names should be capitalized when output. The convention is to always
use lowercase verbose_names and capitalize. in the template where necessary.
<https://docs.djangoproject.com/en/1.0/topics/db/models/#verbose-field-names>.
> The convention is not to capitalize the first letter of the. > verbose_name. Django will automatically
capitalize the first letter. > where it needs to - Gavin Wahl

• Fix a bunch of regressions from namespacing jQuery in admin - Stephen McDonald

• Add django 1.6.1 to supported/tested versions - Stephen McDonald

• Move sitemap generation logic for Displayable instances into DisplayableManager - Stephen McDonald

• Added the url/view for displayable_links.js which is then used by TinyMCE to render a list of site
links to use - Stephen McDonald

• In TinyMCE, don’t convert relative urls to absolute - Stephen McDonald

• Added ALLOWED_HOSTS configuration for Django. As it’s part of the default django settings, we also need
this in mezzanine - Sebastian Clemens

• Python 2/3 fix for forms export - Stephen McDonald

• Added LANGUAGES to settings, since they’re needed for multilingual support - Sebastian Clemens

• Added django.middleware.locale.LocaleMiddleware to MIDDLEWARE_CLASSES - Sebastian
Clemens

• Added a language selector field to the login and admin site - Sebastian Clemens

78 Chapter 1. Table Of Contents

Mezzanine,

• Mention Widgy in the list of third-party modules - Gavin Wahl

• Only show admin language selector when multiple languages configured - Stephen McDonald

• Don’t use future’s int for int settings. Closes #855 - Stephen McDonald

• In admin customization section of docs, mention in_menu method on admin classes for controlling
ADMIN_MENU_ORDER behavior - Stephen McDonald

• Move requirements file for project_template into project root to better conform with hosting providers
like Heroku. Closes #859 - Stephen McDonald

• Moved requirements files - Stephen McDonald

• Broader excpetion handling for importing bleach since its deps aren’t Python 3 ready - Stephen McDonald

• Fix for django-debug-tolbar 1.0 which prevents later middleware from running - Stephen McDonald

• Add config for wheel distribution - Stephen McDonald

• Remove use of deprecated simplejson module and clean up other imports - Stephen McDonald

• Provide read-only twitter settings for the default query - Stephen McDonald

Version 1.4.16 (Sep 30, 2013)

• Revert broken static proxy change - Stephen McDonald

• Better fix for static proxy urls - Stephen McDonald

Version 1.4.15 (Sep 29, 2013)

• Blog: Generate RSS and Atom feeds through richtext_filters - Eduardo Rivas

• Delete BS2 static resources. Add BS3 resources: css, js and fonts - Eduardo Rivas

• Migrated base.html and all it’s includes to BS3 - Eduardo Rivas

• Strip STATIC_URL, leading / from proxied URLs. STATIC_URL often contains host or generic_host
(esp. if STATIC_URL is a. path on the same domain), so it needs to be removed first to ensure it. is removed
completely. Also removed leading ‘/’ from URL, since it. appears staticfiles doesn’t like absolute paths - Adam
Brenecki

• Added a function mezzanine.utils.urls.next_url which is used to retrieve redirect URLs from a
request’s next param, while verifying that the redirect URL is valid - Stephen McDonald

• Fix min Dajngo version - Stephen McDonald

• Use request.get_host rather than request.META[’HTTP_HOST’] - Stephen McDonald

• Fix Django version for travis - Stephen McDonald

Version 1.4.14 (Sep 14, 2013)

• Blog: Catch exception if a non-existent month is requested from the archives - Eduardo Rivas

1.17. Colophon 79

Mezzanine,

Version 1.4.13 (Sep 11, 2013)

• 1.fix comments errors - hanchen

• Allow for there being no “errors” in the twitter api response. When a successful “user” query to the twit-
ter api is completed the json that is returned is a list. In order to validate the response the code tests to
see if it was a dictionary with an “error” key. However passing a string as a index to a list will raise
a TypeError, which was not being caught by the “except” clause. I have added TypeError to the list of
items being caught. There are of course other ways of verifying the response but I think just adding
the TypeError is in keeping with what you have already done. For reference, here is what I was see-
ing: > python manage.py poll_twitter –traceback –force. Traceback (most recent call last): ,. File
"/,/lib/python2.7/site-packages/mezzanine/twitter/models.py", line 74, in run. raise
TwitterQueryException(tweets[”errors”][0][”message”]). TypeError: list indices must be integers, not str -
David Higgins

• Fix tag cloud factor in generic app - Stephen McDonald

Version 1.4.12 (Aug 27, 2013)

• Remove bad 1.6 handling - Stephen McDonald

• Fix settings context processor for email template contexts when cache installed - Stephen McDonald

Version 1.4.11 (Aug 27, 2013)

• Added mezzatheme themes marketplace to features list - Stephen McDonald

• Method to load all symbols of all files in a submodule - Thomas Rega

• Use new decorator "richhtext_filters". The decorator "richtext_filter" is marked as depre-
cated - Thomas Rega

• Move gallery related tests into the app directory. If the app is not installed, the tests are not executed - Thomas
Rega

• Move blog related tests into the app directory. If the app is not installed, the tests are not executed - Thomas
Rega

• Move page related tests into the app directory. If the app is not installed, the tests are not executed - Thomas
Rega

• Move account related tests into the app directory. If the app is not installed, the tests are not executed - Thomas
Rega

• Move form related tests into the app directory. If the app is not installed, the tests are not executed - Thomas
Rega

• Move core related tests into the app tests directory. These tests do not belong direct to an specific app, so they
stay. in the core app directory for now - Thomas Rega

• Simplify new test module structure - Stephen McDonald

• Provide a common TestCase class for all app specific tests, for features such as admin user plus debug cursor
for query tracking. Also consistent naming for tests - Stephen McDonald

• Move tons of tests into their correct apps - Stephen McDonald

• Patch jquery.overlay with jquery.browser support to work with new jQuery versions. Closes #701
- Stephen McDonald

80 Chapter 1. Table Of Contents

Mezzanine,

• Force tinyMCE save in dynamic_inline.js to avoid issues with richtext fields in dynamic inlines and
ordering values not correctly handled. Closes #731 - Stephen McDonald

• Update dev status classifier in setup.py - Stephen McDonald

• Remove inclusion of mezzanine.accounts when testing - Zach Gohr

• Inject all Mezzanine apps into the temp settings module when Mezzanine itself is being tested - Stephen Mc-
Donald

• Use setuptools to test on travis - Stephen McDonald

• Apply skipTests throughout different tests where apps are coupled - Stephen McDonald

• setup.py specifies the test deps so we don’t need to grab them for travis now - Stephen McDonald

• Update send_mail_template to pass optional email headers to the EmailMultiAlternatives constructor.
Rather than having the form page_processor send mail from user submitted email addresses (if present)
have it specify the Reply-To header - Josh Cartmell

• Get rid of FORMS_DISABLE_SEND_FROM_EMAIL_FIELD, always add the Reply-To header if there is an
email_to - Josh Cartmell

• Adding template accessible settings into context for rendering templates for emails - Danny Sag

• Handling case when diff between min and max count is smaller than size. Weights were not calculated correctly
when difference between max_count and min_count was smaller than settings.TAG_CLOUD_SIZES. Changed
calculation of weights to use floating point arithmetic. The results of weight calculations using old and new
code are shown below: http://ideone.com/fXs5aG - Ahmet Bakan

• Adding .control-label to form_fields.html - Troy Harvey

• Indent .control-label - Troy Harvey

• Be a bit more explicit with request arg in settings context processor - Stephen McDonald

• Added mezzanine-meze to third-party apps list - Stephen McDonald

• Added support for Django 1.6. - The situations in which contribute_to_class is called have changed.
- Fixed DeprecationWarning about simplejson. - Explicitly set the TEST_RUNNER to the pre 1.6 one. - Set
default=False on BooleanField - Rocky Meza

• Keep django version pinned - Stephen McDonald

• Ensure correct arguments are used when returning a Page in place of a 404 from a non-page urlpattern - Ben
Ledbury

• Better error propagation when querying for tweets - Stephen McDonald

• Added –force option to poll_twitter command which will query for tweets on all queries - Stephen Mc-
Donald

• Catch and show twitter query errors in management command, and allow continuing - Stephen McDonald

• Allow twitter queries to gracefully fail in templates - Stephen McDonald

• Bump requeusts-oauthlib version. Closes #764 - Stephen McDonald

• Exempt Link pages from 404 Page replacement - Ben Ledbury

• Changed ‘form’ to ’editable_form’ to fix naming conflict. Editable JS no longer being pulled in - Nicole
Harris

• Don’t quote bullets,. The indentation causes the bullets to be treated as blockquotes - David Winterbottom

• ,but do quote quotes :grinning: - David Winterbottom

1.17. Colophon 81

Mezzanine,

• Use correct comment field name in akismet API. Closes #768 - Stephen McDonald

• Added TimeStamped model mixin to Displayable, for created/updated timestamps on all models. Closes #661 -
Stephen McDonald

• Allow account signups with profiles containing non-nullable fields. Closes #749 - Stephen McDonald

Version 1.4.10 (Jul 29, 2013)

• Added window.__language_code variable to admin and inline loader - Artem Gluvchynsky

• Better error message for page models that get removed from INSTALLED_APPS. Closes #722 - Stephen Mc-
Donald

• Allow initial user creation in syncdb when a profile model is managed by migrations and doesn’t yet exist -
Stephen McDonald

• Looser AJAX response check for page reordering. Closes #727 - Stephen McDonald

• Allow key settings to be defined in fab conf and injected into live local_settings module - Stephen Mc-
Donald

• Added valid Polish messages for mezzanine/core. Closes #729 - Marek Wywiał

• add a tox.ini config file - jferry

• Use protocol-relative URL to avoid SSL warnings - Vinod Kurup

• Make running fabfile outside project root optional, since it conflicts with importing the fabfile into other fabfiles
- Stephen McDonald

• Specify minimum version of pytz requirement - Vinod Kurup

• Fixed view and JS to be compatible with jQuery 1.8 - Ethan Goldstine

• Fix gravatar_url tag for non-ascii email addresses. Closses #721 - Stephen McDonald

Version 1.4.9 (Jul 11, 2013)

• Allow deployments to be run from project subdirectories - Stephen McDonald

• Add support for settings.RICHTEXT_FILTERS. RICHTEXT_FILTERS is a list of items that are valid
for the. RICHTEXT_FILTER setting. The plural version takes precedence if it is. available and non-empty.
Each item in RICHTEXT_FILTERS is applied in. order. An alias for the richtext_filter template
filter has been added to. match the plural nature of the new setting: richtext_filters simply. calls on
richtext_filter for its output - Tim Valenta

• Fixed blog post categories list in blog_post_list.html template - Artem Gluvchynsky

• Removed redundant jQuery media from KeywordsWidget - Artem Gluvchynsky

• Use urljoin in Page.get_absolute_url for link pages - Dheeraj Sayala

• RTL: fix position of changelink icon in page tree after recent changes. Problem introduced in aec1a0462b60,
which solves an issue due to long. page names - Ahmad Khayyat

• Comma separate categories in blog post listing - Stephen McDonald

• Update docs for new RICHTEXT_FILTERS setting - Stephen McDonald

• Properly deprecate RICHTEXT_FILTER setting in favour of RICHTEXT_FILTERS (plural) setting - Stephen
McDonald

• Update templates to use new richtext_filters (plural) tag - Stephen McDonald

82 Chapter 1. Table Of Contents

Mezzanine,

• Allow a single BCC address in addition to list/tuple. BCC fails if the addr_bcc argument is a single address
rather than a list/tuple. This commit wraps a single address in a list to fix this problem - Alex Hill

• Make sure request._messages has been set before trying to access it. This is for cases where the Mes-
sageMiddleware hasn’t had a chance to. run, e.g when a previous middleware returned an exception - Gu1

• Use a separate key setting for nevercache tokens - Stephen McDonald

• Remove print - Stephen McDonald

• Add is_current_parent on pages filtering - Antoine Catton

• Remove field related to Django built-in user model. South is expecting those fields to be in the database. So
it is. selecting them, since some custom user models don’t have them, this can. break this migration - Antoine
Catton

Version 1.4.8 (Jun 27, 2013)

• Fix nginx config to work on more recent ubuntu versions. Not sure how backwards compatible this is. Please see:
http://stackoverflow.com/questions/8768946/dealing-with-nginx-400-the-plain-http-request-was-sent-to-https-port-error
- David Novakovic

• dynamically generate top margin of admin content area - Andromeda Yelton

• contentMargin out of global namespace - Andromeda Yelton

• Force csrf token generation on every request with cache middleware. Closes #676 - Stephen McDonald

• Use a more explicit name in PageAdmin.get_content_models which won’t collide with a commonly
used field name such as name - Stephen McDonald

• Don’t use ugettext_lazy for form field labels since Django will double-escape them. Closes #682 - Stephen
McDonald

• Move case-insensitive keyword creation into KeywordManager, and allow for duplicate results. Closes #679 -
Stephen McDonald

• Fix ADD_PAGE_ORDER. Closes #681 - Stephen McDonald

• Fix uses of next param for redirects where param exists but value is empty - Stephen McDonald

• Fix invalid migration - Stephen McDonald

• Revert fix to #594 #677 - causes issues with status messages - Stephen McDonald

• TagCloser - don’t close br and image tags - John Groszko

• Test changes to TagCloser - John Groszko

• Clean up some docstrings - Stephen McDonald

• When using search against an abstract model (eg Displayable), filter the combined models searched against by
the models represented in the SEARCH_MODEL_CHOICES setting. Closes #684 - Stephen McDonald

• Add a note to search docs about SEARCH_MODEL_CHOICES affecting abstract search behaviour - Stephen
McDonald

• Added missing class to collapsible navbar that affected nested menus - Jason Wong

• SS: Moved to the original - Sachin Shende

• long title : break words on pages tree - jferry

1.17. Colophon 83

Mezzanine,

• SS: Changes done to Twitter app to upgrade to API 1.1. 1. Added requests==1.2.3 and
requests-oauthlib==0.3.2 to the dependency list. 2. Added 4 new keys to the settings. 3. Changed
models to use new authentication for Twitter API, changed urls and other changes to parse the response - Sachin
Shende

• use of staticfiles to get url to tinymce - Eduardo S. Klein

• Just added my Website to the gallery ;) - Rafael Beckel

• More consistent names and validation of new twitter settings - Stephen McDonald

• Document new requirements for Twitter API - Stephen McDonald

• Fix for Issue #691 - ACCOUNTS_APPROVAL_REQUIRED bypasses
ACCOUNTS_VERIFICATION_REQUIRED - Ling Thio

• Provide better default for FILE_UPLOAD_PERMISSIONS - Stephen McDonald

• fixed little firefox bug - jferry

• Bump grappelli-safe version - Stephen McDonald

• Improved ssl cipher settings in default nginx conf - Stephen McDonald

Version 1.4.7 (May 18, 2013)

• Added the ACCOUNTS_NO_USERNAME setting, which will hide the username field from signup/update forms,
but still generate a unique username for use in profile view slugs - Stephen McDonald

• Allow querystring vars to be excluded from pagination links - Stephen McDonald

• Missing migration on site perms. Closes #655 - Stephen McDonald

• Added support for setup.py test - Stephen McDonald

• Pass in the user to page.get_ascendants in the page view. This will allow previewing of the unpublished
children pages of. unpublished parent pages. fixes #653 - Rocky Meza

• Lowered MAX_POSTS_PER_CALL to 20; Added support for question/answer posts - Jeff Fein-Worton

• Use a context instance when rendering page menus, huge performance boost - Stephen McDonald

• Fixed rss import errors - Andrey Zhukov

• Fixed the igrations to be able to run with a custom user model. This uses a pattern copied from django-reversion:
https://github.com/etianen/django-reversion/blob/master/src/reversion/migrations/0001_initial.py
- Rocky Meza

• Add addr_bcc arg to send_mail_template. This accommodates the new setting
SHOP_ORDER_EMAIL_BCC in Cartridge - Alex Hill

• Fix lookup for username generation when ACCOUNTS_NO_USERNAME is True, closes #664 - Stephen McDon-
ald

• Fixed 0005 migration wrt custom user models - Rocky Meza

• Correctly validate float settings in mezzanine.conf - Stephen McDonald

• Added some validation in the createdb command that fails if a Mezzanine table exists, to prevent people from
running it and accidentally faking new migrations that need to be run - Stephen McDonald

• mezzanine/accounts/templates/email/account_approved.html: removed the extra.
“” - Alexandre Hajjar

84 Chapter 1. Table Of Contents

http://

Mezzanine,

• Make fabfile work in Windows. Two small changes allow deployment via Fabric from Windows: * Use
posixpath.join instead of os.path.join to construct all paths destined for the remote machine. *
Check for "fab-file.py" as well as “fab” in sys.argv, to handle the way setuptools-generated command-
line scripts work in Windows - Alex Hill

• Fix urlpattern for archive year - Stephen McDonald

• Hide printing STATIC_ROOT in deploys - Stephen McDonald

• Added paragraph to mezzanine/docs/user-accounts.rst about ACCOUNTS_NO_USERNAME. set-
ting - Alexandre Hajjar

• Used username_label variable in the PasswordResetForm label. (accounts/forms.py) - Alexandre
Hajjar

• Pin html5lib, see https://github.com/jsocol/bleach/issues/94 - Stephen McDonald

• Added an extra safeguard for type errors in editable settings - Stephen McDonald

Version 1.4.6 (Apr 28, 2013)

• Fix set_dynamic_settings for projects without AUTHENTICATION_BACKENDS defined - Stephen Mc-
Donald

• Provide meaningful exception when dotted import fails - Sam Kingston

• SS: Line 12 dsq.src changed to include https if the site is runnning on SSL. Comments do not appear if the
site is running on SSL and js link is http - Sachin Shende

• Adding Golds Gym Utah - Josh Batchelor

• If static_directory does not exist, create it. Instead of trying to tar the static directory (which. fails when
the dir does not exist), we create it when. is missing - José Aliste

• Hack for generic fields that allows MySQL migrations to run correctly - Stephen McDonald

• Don’t assume a site exists in some older migrations - Stephen McDonald

• Use consistent language for ‘log in / sign up’ - Stephen McDonald

• The db_type field must take a second ‘connection’ argument, even though unused, otherwise one gets an
‘unexpected keyword argument connection’ TypeError - Marcos Scriven

• Added a port of Django’s RedirectFallbackMiddleware with support for Mezzanine’s multi-site handling. Closes
#535 - Stephen McDonald

• Changelist view signature change to work with reversion - Thejaswi Puthraya

• Mark redirects middleware as unused if redirects not installed - Stephen McDonald

• Add special handling in PageMiddleware for non-page views that raise 404s, but do so with a valid page slug - in
this case, we use the page view instead, which allows pages to be created that may match non-page urlpatterns.
Closes #561 - Stephen McDonald

• Fix CSRF token generation when cache is enabled, should solve #632 - Gu1

• Be more explicit in checking for a test run management command - Stephen McDonald

• Add missing reference for link - Thibault J.

• Fix SearchableManager._search_fields incorrectly persisting across managers for model sub-
classes. Closes #633 - Stephen McDonald

• Add code of conduct - Ken Bolton

1.17. Colophon 85

Mezzanine,

• New mezzanine-file-collections reference. mezzanine-media-library got renamed to mezzanine-file-collections.
The reference was updated in this commit - Thibault J.

• Added the bool setting ACCOUNTS_APPROVAL_REQUIRED, which defaults to False and when set to True,
sets newly created public user accounts to inactivate, requiring activation by a staff member. Also added the
setting ACCOUNTS_APPROVAL_EMAILS which can contain a comma separated string of email addresses to
send notification emails to each time a new account is created and requires activation. Closes #417 - Stephen
McDonald

• Document the new account approval feature - Stephen McDonald

• Better name for emails_list -> split_addresses - Stephen McDonald

• Bump grappelli-safe version - Stephen McDonald

• Fix thumbnail template tag for palette-mode images. Closes #636 - Stephen McDonald

• Added select_related for user in blog_recent_posts template tag - Stephen McDonald

• Fix lookup of initial data in from-builder forms, and correctly handle initial values for checkbox fields - Stephen
McDonald

• Allow forms-builder forms to contain template code for default values - Stephen McDonald

• Provide more granular export filtering for multiple-choice fields in forms-builder export, eg matches/doesn’t
match any/all selected choices, and also allow range filters to use only one boundary - Stephen McDonald

• Fix static_proxy to work with //host STATIC_URLs. STATIC_URL =
’//mybucket.s3.amazonaws.com’ would break the static_proxy prefix stripper, and therefore
break tinyMCE plugins. This fix adds proper handling of generic-protocol hostnames to the static_proxy
view - Gabe Smedresman

• Reorder blog and accounts patterns in mezzanine.urls to allow for projects with a blog homepage that also
have accounts enabled - Stephen McDonald

• Fix handling of paths in zip imports in galleries app - Stephen McDonald

• accounts: properly reject multiple matching e-mail addresses. Django allows multiple Users with the same e-
mail address; the existing. form can throw MultipleObjectsReturned when get(email=email) is called. against
such a dataset - mike wakerly

• Added default wsgi script to project template - Stephen McDonald

• Only add input-xlarge on inputs without a class attribute, fixes #643 - Gu1

• Replaced the BLOG_URLS_USE_DATE setting with a new BLOG_URLS_DATE_FORMAT setting - it can con-
tain the string year, month, or day, which controls the date granularity in blog post URLs - Stephen McDonald

• Editable settings refactor - this change is to clear up confusion around editable settings being defined in a
project’s settings module. Previously when this happened, the settings.py module value would only serve
as a default, which would be superceded by the db editable value as soon as the settings admin form is first
saved. To address this, this change means that editable settings defined in the project’s settings.py module
now mark the setting as not editable, so it will always be the value used. We also include some handling for
the migration case so that even with this change, editable settings already in the db that have a settings.py
value defined will still use the db value and provide a warning - Stephen McDonald

• Revert the handling for still using db values for editable settings with settings.py values defined, since it
basically defeats the purpose if a settings.py value is added once a project is live - Stephen McDonald

• Added INLINE_EDITING_ENABLED setting - Jeff Fein-Worton

• New INLINE_EDITING_ENABLED setting doesn’t need to be editable - Stephen McDonald

• Don’t force lowercase keywords. Closes #647 - Stephen McDonald

86 Chapter 1. Table Of Contents

Mezzanine,

• Allow blog feed title and description to be overridden - Stephen McDonald

• Use callable description in atom rss feed - Stephen McDonald

• Properly escape comments in comment_filter template tag - Stephen McDonald

• Bump grappelli/filebrowser versions - Stephen McDonald

Version 1.4.5 (Apr 03, 2013)

• Fix some static urls in admin to support external storage backends - Stephen McDonald

• Bump grappelli/filebrowser versions - Stephen McDonald

Version 1.4.4 (Mar 31, 2013)

• Added user FK to rating model, and allow authenticated users to edit their ratings. Added new setting
RATINGS_ACCOUNT_REQUIRED to allow ratings to behave like comments, where requiring authentication
can store post data in session until user logs in to complete the rating - Stephen McDonald

• If RichTextPage is unregistered in the admin, have the page add link in the dashboard go to the page tree -
Stephen McDonald

• Let’s go back to a fixed-width navbar - Stephen McDonald

• Give the navbar some more space - Stephen McDonald

• Docs for using the Media Library browse dialog in custom widgets - Ahmad Khayyat

• Added the ADD_PAGE_ORDER setting, which is a sequence of app_label.object_name values of Page
subclasses, for defining the ordering used in the add drop-down on the admin page tree - Stephen McDonald

• Use CSS instead of JavaScript for the admin app dropdowns. There were some bugs with the dropdowns
when they were in JavaScript: 1. When you open a dropdown and then scroll, the dropdown would stay. put,
instead of following the scroll. 2. The JavaScript used .live(‘mouseover’) which binds to body and. wastes
memory because it’s fired for mouseover on every single DOM. element. 3. Occasionally, the dropdowns never
disappeared even after mouseout. This commit fixes those bugs by using CSS and :hover instead of. JavaScript.
Additionally, it simplifies the JavaScript related to. setting the href of the primary menu item links to their first
child. It is a pixel for pixel match of the previous functionality and. appearance - Rocky Meza

• Update to bootstrap 2.3.1 - Stephen McDonald

• Use Django’s module_has_submodule util in any module autodiscover scenarios (page processors, conf
defaults) so we can correctly propagate real errors - Stephen McDonald

• Tighten up the search form css a bit - Stephen McDonald

• Remove the model graph FAQ since no one’s actually ever asked it - Stephen McDonald

• New docs sesction, Utilities, covering the models/fields in mezzanine.generic, as well as some of the
more useful template tags in mezzanine_tags - Stephen McDonald

• Django 1.5 url compatability - pahaz

• Use future lib in form entries template for backward compat - Stephen McDonald

• Fix search form HTML - Stephen McDonald

• Fix rating css - Stephen McDonald

• Add JQUERY_UI_FILENAME setting and corresponding docs - Ahmad Khayyat

• Fix rating field lookups - Stephen McDonald

1.17. Colophon 87

Mezzanine,

• Added domain to cache key for site ID caching - Stephen McDonald

• Added some JS to the default front-end templates that delays closing of dropdown menus in the primary nav to
make them more user friendly. Closes #587 - Stephen McDonald

• Added the setting BLOG_RSS_LIMIT defaulting to 20, which limits the number of blog posts shown in the
RSS feed - Stephen McDonald

• Update BLOG_RSS_LIMIT setting description to describe setting it to None for no limit - Stephen McDonald

• Make BLOG_RSS_LIMIT setting not editable - Stephen McDonald

• A little late here, but fix Django 1.3 support - Stephen McDonald

• Provide a default max_length for FileBrowseField - Stephen McDonald

• Added a website powered by Mezzanine - poptosic

• Better comment button text - Stephen McDonald

• Unicode fix for comment emails - Stephen McDonald

• Don’t show site selection form when there’s only one site. If there’s only a single site, there’s no need to show
this form,. because it can’t do anything - Gavin Wahl

• Only show one reply form at a time in a comment thread - Stephen McDonald

• Configurable page var names in pagination querystrings - Stephen McDonald

• Pin max Django version to 1.5.x - Stephen McDonald

• Fix tweets/comments css - Stephen McDonald

• RTL: adjust admin navbar thickness after the js->css change - Ahmad Khayyat

• Provide optional template for user panel in nav - Stephen McDonald

• RTL: fix position of help icon in filter_horizontal m2m widget - Ahmad Khayyat

• Remove content from DisplayableAdmin’s search_fields since content is not defined on Displayable and
may or may not be present on a model that subclasses it and uses the DisplayableAdmin - Josh Cartmell

• Clean up nav version of user panel - Stephen McDonald

• Don’t strip any HTML in TinyMCE since filtering is handled by bleach - Stephen McDonald

• 569 - replace uses of STATIC_URL in templates with ‘static’ template tag - endophage

• site is never assigned when hostname is set, single line addition fixes the problem - endophage

• Don’t depend on unloaded comment state for determining parent-most level of replies in comment_thread
template tag - Stephen McDonald

• Fix KeywordsField swapping of name in model’s search_fields when a sequence is used - Stephen Mc-
Donald

• Moved the logic for building up search fields in SearchableQueryset into a new method
SearchableManager.get_search_fields, which allows externally retrieving the search fields
dict that will be used - Stephen McDonald

• Use model’s search_fields to populate DisplayableAdmin.search_fields - Stephen McDonald

• Fix use of JQUERY_FILENAME with static template tag - Stephen McDonald

• Add compress tags to js/css in base mobile template - Stephen McDonald

• Fix empty thumbnails for fielbrowser fields in AdminThumbMixin - Stephen McDonald

• Added AJAX/JSON handling for comment/rating login redirects, and comment form errors - Stephen McDonald

88 Chapter 1. Table Of Contents

Mezzanine,

• Allow migrations and fixtures to run from scratch without mezzanine.pages installed - Stephen McDonald

• Don’t update existing ratings if their values haven’t changed - Stephen McDonald

• Fix dot lookup in template settings - Stephen McDonald

• Upgrade bitly integration - added new BITLY_ACCESS_CODE setting to replace the old api settings - Stephen
McDonald

• Upgrade select_related call in recent_comments template tag - Stephen McDonald

• Remove all use of django.conf.urls.defaults since we don’t support Django 1.3 anymore. Closes
#539 - Stephen McDonald

• Remove all special handling for Django 1.3 since it’s no longer supported - Stephen McDonald

• Removed all use of Django’s deprecated ADMIN_MEDIA_PREFIX since we no longer support Django 1.3 -
Stephen McDonald

• Fix missing import - dizpers

• Added keyword/category filtering to blog post admin - Stephen McDonald

• Remove the USE_REVERSION setting since it’s incomplete - Stephen McDonald

• Remove stray deprecated django.conf.urls.defaults - Stephen McDonald

• Update to latest grappelli/filebrowser-safe - Stephen McDonald

• Bump grappelli_safe to 0.2.16 - Stephen McDonald

• Fix list/tuple handling for AUTHENTICATION_BACKENDS checks in set_dynamic_settings - Stephen
McDonald

• Revert sequence settings back to tuples in set_dynamic_settings since some Django tests expect them
to be tuples - Stephen McDonald

• Update grappelli version - Stephen McDonald

• Rename locale folders to sr_Latn - Sebastián Ramírez Magrí

Version 1.4.3 (Feb 27, 2013)

• domain change to wdiaz - William Díaz

• Mezzanine’s auth backend incompatible with custom user model tests in Django 1.5 - Stephen McDonald

• Added Django 1.5 to travis config - Stephen McDonald

• Add a fallback for the newly required ALLOWED_HOSTS setting in Django 1.5, that will use the domains defined
in the Site model - Stephen McDonald

• Use the string name for user relationships in models since trying to import a custom user model falls apart -
Stephen McDonald

• Remove invalid migration - Stephen McDonald

• Remove upgrade flag from installation instructions in case people don’t know how pip works - Stephen McDon-
ald

• Drop Python 2.5 tests in travis since Django 1.5 doesn’t support it and we’ll be dropping it soon - Stephen
McDonald

1.17. Colophon 89

mailto:sr@latin

Mezzanine,

Version 1.4.2 (Feb 23, 2013)

• Added ratings to comments, with new settings COMMENTS_USE_RATINGS for toggle ratings form in com-
ments, and RATINGS_RANGE for defining valid ratings, replacing the old min/max settings. Also added _sum
field injections for models with rating fields, and rating_date field on ratings, for use with time scaled
scores - Stephen McDonald

• Ensure emails are lowercased for gravatar hashes - Stephen McDonald

• Fix page tree admin template when reversion is used - Stephen McDonald

• Enhanced args to gravatar URLs - Stephen McDonald

Version 1.4.1 (Feb 19, 2013)

• Remove unnecessary permission from live_settings module. Closes #568 - Stephen McDonald

• Test slug after setting parent of an unsaved page with autogenerated slug - wrwrwr

• Bum filebroswer_safe to 0.2.16 - Stephen McDonald

• Prefix BLOG_USE_FEATURED_IMAGE in blog templates with settings., otherwise it always evalutes to
False - Josh Cartmell

Version 1.4.0 (Feb 17, 2013)

• Added a has_home variable to templates for the page_menu template tag, which indicates whether a home-
page object exists, and can be used for checking whether a hard-coded homepage link should exist in the menu
template - Stephen McDonald

• Update the default twitter query since it’s been flooded by movie tweets - Stephen McDonald

• Add a deprecation layer for settings in templates, and deprecate the PAGES_MENU_SHOW_ALL setting since
it’s too specific for a setting and can be implemented in one line in a template - Stephen McDonald

• Added an example to the page menu docs of rendering a tree representing the current section of a site being
viewed - Stephen McDonald

• Don’t need to uncheck in_menus for an editable homepage anymore, so remove the comment describing that
- Stephen McDonald

• Correctly handle file uploads in profile forms - Stephen McDonald

• Alpha-sort options for the search form - Stephen McDonald

• Remove Nimbis Services link for now. We haven’t deployed our Mezzanine-based Nimbis Services site. into
production yet (the old link was to a testing site that is only. used internally). We’ll add this back in once we go
live with our Mezzanine site - Lorin Hochstein

• Also check BLOG_USE_FEATURED_IMAGE in templates when displaying blog post’s featured image -
Stephen McDonald

• Added a sort_by template filter for general use - Stephen McDonald

• Removed Slugged.Meta.ordering since it’ll generally always be nuked by Meta on a subclass - and
added correct ordering to BlogCategory - Stephen McDonald

• Clean up BlogCategory.Meta - Stephen McDonald

• Move clean_content to new DisplayableAdminForm - Alex Hill

90 Chapter 1. Table Of Contents

Mezzanine,

• Fix parent of Team and History pages in fixtures. Assign the Team and History pages to the About page (id 2)
instead of the Blog page (id 1) in Page fixtures - Alex Hill

• Fix generating descriptions when saving page instances directly, as their content type subclass fields weren’t
available for the description - Stephen McDonald

• Allow for no content model in Page.description_from_content - Stephen McDonald

• Fixed duplicate home IDs in menu templates and add some missing IDs - Stephen McDonald

• Check has_home to avoid duplicates. Updated footer_tree.html to behave the same as the other menu
templates, checking has_home so that a page that is also the home doesn’t end up in the menus twice -
joshcartme

• Strip language prefix from request path, before trying to match it against pages slugs - wrwrwr

• Update mezzanine/accounts/locale/zh_CN/LC_MESSAGES/django.po - lyhapple

• Drupal blog importer for mezzanine blog - #issue 527 - Bryden Frizzell

• Fixed import_posterous for module requests v1.0.1 and above. - issue #528 - Skooch

• Restore permission check for editable JS/CSS - Stephen McDonald

• Added handling for model field defaults in dynamic inlines. Closes #526 - Stephen McDonald

• Precedence of conflicting page processor context. The order of execution of page processors was reversed in
#315 so that custom page processors returning an HttpResponse would bypass the default processors. That had
the side-effect of making context variables in default processors overwrite those in custom processors, which
isn’t very intuitive. This change restores the original behaviour of context variables, while retaining the reversed
execution order - Alex Hill

• Added a welcome message and quick links for getting started, for new developers, to the default homepage
template - Stephen McDonald

• Fixed conditional context updates in page processors for Python < 2.7 - Stephen McDonald

• Fix handling of non-alpha search terms in SearchableQuerySet - Stephen McDonald

• Fixed support for automatically adding custom ManyToMany fields in PageAdmin. Closes #534 - Stephen
McDonald

• Improved some of the messages shown through installation (createdb/syncdb signals) - Stephen McDonald

• Clarify requirements for search_fields in the search api docs - Stephen McDonald

• Hide the help text for the slug field for Link pages in the admin - Stephen McDonald

• Fix JS/CSS file names in base mobile template. Closes #537 - Stephen McDonald

• use AUTH_USER_MODEL if available - Ben Wilson

• Fix Manager MRO issue where search_fields param threw errors - David Novakovic

• Test for SearchableManager in DisplayableManager - David Novakovic

• Hopefully fix MRO regression - David Novakovic

• Fix MRO issues and avoid regression at the same time - David Novakovic

• Protect sequences provided or generated for the default value of MenusField from being forced to uni-
code (as for example u’[1, 2, 3]’). Django forces fields defaults to unicode unless they’re callable (see
Field.get_default). This is done to prevent problems that could arise from setting the same mutable
object as a default for many fields (see Django ticket #18478) - wrwrwr

• add fa and fa_IR locales - Mahdi Bornazadeh

1.17. Colophon 91

Mezzanine,

• Clean up use of AUTH_USER_MODEL - Stephen McDonald

• fix persian locale - Mahdi Bornazadeh

• Database-prepare tuples in the same way lists are handled in MultiChoiceField - wrwrwr

• Allow pages to be dragged out of a subtree to the root level in page admin - wrwrwr

• Check that setting a new page parent won’t cause a cycle in the parent-child graph. Such cycles lead to an
infinite loop in Page.save (e.g. python process consuming all resources) - wrwrwr

• Preparation for django-reversion - uli

• Altered git repo_url checks to allow ssh hosted git repositories - Travis Nickles

• Fixed indentation issue and PEP-8 issue with fabfile mods - Travis Nickles

• Don’t try to create any pages if the models it uses aren’t installed - Gavin Wahl

• Support for Django 1.5 custom user models. Uses get_user_model for every reference to User, and provides
a default. implementation of get_user_model for Django <= 1.4 - Gavin Wahl

• Clean up hg/git checks in fabfile - Stephen McDonald

• Fix fabfile - Stephen McDonald

• Move RSS url parsing code from the drupal importer into the main RSS blog importer, and remove the drupal
importer since it isn’t specific to drupal - Stephen McDonald

• Fix import error message in rss importer - Stephen McDonald

• Don’t use Bootstrap’s navbar-inverse class by default, for better theme compatibility. Closes #551 - Stephen
McDonald

• Fix some missing imports and settings import errors for the new user model hooks - Stephen McDonald

• Added possibility to set custom menu titles for models in ADMIN_MENU_ORDER, using the same notation as
for views (e.g. (_("News"), "blog.BlogPost")) - wrwrwr

• Python 2.5 compatibility - wrwrwr

• Avoid fixing parent slug in Page.set_parent if the page had no slug to start with - wrwrwr

• Use current_page instead of request for is_current. Since we already have the ‘current page’ object,
we can compare it. against ourself to find if we are current - Gavin Wahl

• rm unused import - Gavin Wahl

• Replace the rating form with a message after user casts a vote - wrwrwr

• Use content_model not the base Page in PageAdmin. When calling methods on a page, they should be
called on the subclass,. not the base Page. This allows page types to override them - Gavin Wahl

• The usage of reversion can now be disabled for DisplayableAdmin - uli

• Update admin menu docs to mention labels for regaulr models - Stephen McDonald

• Change new reversion setting to be opt-in instead of opt-out - Stephen McDonald

• backout aa850efe2315 - Stephen McDonald

• backout eff95dec6799 - Stephen McDonald

• Moved the MEDIA_LIBRARY_PER_SITE setting from filebrowser_safe into Mezzanine so it’s docu-
mented. It allows per-site filebrowser root directories - Stephen McDonald

• Bump filebrowser/grappelli versions - Stephen McDonald

92 Chapter 1. Table Of Contents

Mezzanine,

Version 1.3.0 (Dec 26, 2012)

• added dob field to list of form fields - mmuk2

• Update url templatetags for Django 1.5. See https://docs.djangoproject.com/en/1.4/releases/1.3/#changes-to-url-and-ssi.
“{% load url from future %}” is omitted in favour of a global import in. boot/__init__.py - Alex Hill

• Bring templates in line with latest master - Alex Hill

• Move forward compatibility code to utils/conf.py - Alex Hill

• Assume development server if command is “harvest”. Lettuce uses the “harvest” command to run a development
server. See http://lettuce.it/recipes/django-lxml.html#lettuce-run-the-tests.
Note that if this isn’t set, then media will not be served correctly. when testing with lettuce - Lorin Hochstein

• Bump versions: filebrowser_safe >= 0.2.12, grappelli_safe >= 0.2.10 - Stephen McDonald

• Use non-minified jquery.tools and jquery.ba-resize - Per Andersson

• Render admin “add” link if no change permission. Handle the case where a non-superuser staff member has
“add”. permission but not “change” permission - Lorin Hochstein

• Escape backticks in python task in fabfile. Closes #396 - Stephen McDonald

• Ensure last output line is used to determine remote STATIC_URL in fabfile, since warnings may occur in output
- Stephen McDonald

• add related_posts for blog - Dmitry Falk

• fix related_posts in template - Dmitry Falk

• Allow users to sign up with capital letters in their username - David Novakovic

• Update mezzanine/core/admin.py. Add some stuff to OwnableAdmin to make its use more obvious to
new users - David Novakovic

• Filter urls that use https - Eduardo Rivas

• Added mezzanine-polls to third party apps - Stephen McDonald

• Update mezzanine/accounts/__init__.py. Display more informative error if this exception is
thrown. This exception handler can hide informative errors about model unrelated model declaration. - David
Novakovic

• Update mezzanine/accounts/__init__.py. Even better checks for the profile model string - David
Novakovic

• Fix unfiltered RSS feeds for Django 1.3 - Stephen McDonald

• Use tag slugs for tag RSS feeds - Stephen McDonald

• Fix unicode handling for slugs in Django 1.5 - Stephen McDonald

• Fix urls in mobile search include for Django 1.5 - Stephen McDonald

• Fix mobile tests for Django 1.5 - Stephen McDonald

• Handle invalid images in thumbnail tag. Closes #410 - Stephen McDonald

• Use Page URLs without trailing slash when settings.APPEND_SLASH is False - Kenneth Falck

• Full support for APPEND_SLASH is False - Stephen McDonald

• Removing initial content from createdb when –nodata parameter is present - Sean Voss

• Added TWITTER_STRIP_HIGH_MULTIBYTE setting to strip mb3/mb4 characters in Tweets (mainly Emoji),
which cause problems with MySQL UTF-8 collation - Kenneth Falck

1.17. Colophon 93

Mezzanine,

• Added the setting SSL_FORCED_PREFIXES_ONLY, which defaults to True and controls whether URLs not
matched by SSL_FORCE_URL_PREFIXES are redirected back to HTTP if accessed over HTTPS - Stephen
McDonald

• Added the COMMENT_FILTER setting for controlling how comments are rendered. Works the same as the
RICHTEXT_FILTER setting. Closes #416 - Stephen McDonald

• Added has_children_in_menu and num_children_in_menu attributes to page objects in the
page_menu template tag, for determining valid children in the context of a menu and the in_emnus field.
Closes #413 - Stephen McDonald

• Added automated hg tagging for versions in changelog generation. Closes #259 - Stephen McDonald

• Fixed misspelling of argument in send_verification_mail - Zean Tsoi

• Framework to allow EXTRA_FORM_FIELDS - Sean Voss

• Allow subclasses to define their own ProfileFieldsForm - David Novakovic

• patches to be jython compatible - Donneker

• Fixes #427: Disqus comment counts are now pulled in on the blog post detail page, if available - cato

• Fix incorrect status on quick-blog form. Closes #429 - Stephen McDonald

• Make form fixtures optional and remove old fixtures - Stephen McDonald

• Use createdb –nodata in fabfile - Stephen McDonald

• Use actual keyword instances in blog listing. Closes #431 - Stephen McDonald

• Put block tags into all blog templates so they can be overridden. Closes #443. This resulted in the split-
ting of the editable field for the title and. publication date in the list page into two editable fields, so they.
could be two separate blocks. I notice that the blog detail page. doesn’t have an editable field for the pub-
lish date at all, which I. shall address separately. block tags are namespaced by blog_post_detail_ and
blog_post_list_. respectively, and inside the list page, the blocks related to an. individual post are names-
paced with blog_post_list_post_ - Penny Leach

• Made publication date an editable field in the blog post detail template - Penny Leach

• Remove selection disabling in page_tree.js - causing issues with latest Firefox - Stephen McDonald

• Added some missing calls to richtext_filter. Closes #438 - Stephen McDonald

• Correctly handle empty password in login form. Closes #439 - Stephen McDonald

• Move error templates into custom paths so that Django’s tests can trigger errors using its own error templates,
since Mezzanine’s urlpatterns aren’t used which its error templates depend on - Stephen McDonald

• Add some extra comments and validation for the new FORMS_EXTRA_FIELDS setting - Stephen McDonald

• Allow LoginForm to be inherited and extended - Renyi Khor

• Slugged model now uses self.title to generate slug. Fixes #445 - Andrey Shipilov

• Update mezzanine/blog/models.py. wrong keyword argument passed to
blog_post_list_category in get_absolute_url for the BlogCategory model. This results
in an empty url when using Link to my Category.
The problem was that the blog/urls.py uses ‘category’ as the keyword and the get_absolute_url
used ‘slug’ as the keyword. I changed it within get_absolute_url because I guess changing it within
blog/urls.py may break backwards compatibility - Andre Graf

• Port gallery expose to updated jquerytools version. On overlay load, expose the .image-overlay. Fixes
bug where every other image was not exposed due to timing issue. when #exposeMask fades out when already
switched to next image - Per Andersson

94 Chapter 1. Table Of Contents

Mezzanine,

• Update mezzanine/pages/models.py - Ken Bolton

• Use local copies of instead of cdn. * html5shiv. * jquery mobile - Per Andersson

• Move html5shiv.js outside of Mezzanine’s js directory, since it’s not required by Mezzanine itself (eg it’s
project specific and can be removed per project) - Stephen McDonald

• Update blog_recent_posts to allow an optional slug. If the slug is specified returned blog posts will be
restricted to being in the category matching the slug. If the slug does not match a category, posts will be returned
as normal - joshcartme

• Added support for keyword args in the as_tag template tag wrapper - Stephen McDonald

• Fix for issue #450: home_slug with prefix - uli

• Fix bad semicolon in gallery.js - Stephen McDonald

• Use PROJECT_NAME fabric setting as CACHE_MIDDLEWARE_KEY_PREFIX in live_settings.py -
Stephen McDonald

• Update twitter bootstrap to v2.2.1 - Ivan Teoh

• Inverse the top navbar from white to black - Ivan Teoh

• Superusers should be able to select any site - Josh Cartmell

• Disable front end editing for users who don’t have access to a site - Josh Cartmell

• Include AdminProfileInline so that it is not lost if the user enables Mezzanine accounts - Josh Cartmell

• Check if the user is_staff first to avoid unecessarily reversing admin:index on every request - Josh Cartmell

• Only load and display inline editor if the user has access to the current site’s admin - Josh Cartmell

• Only check if a user has access to the current site in the middleware. Save the result on request.user and
use this elsewhere - Josh Cartmell

• Added the setting OWNABLE_MODELS_ALL_EDITABLE which allows a sequence of
app_label.model_name models to be defined, that are Ownable subclasses which won’t have their
change-list admin views filtered by user - Stephen McDonald

• Update .po files - Sebastián Ramírez Magrí

• Updated signal to only automatically create admin profiles for staff and not break the User add view if a site is
selected - Josh Cartmell

• Fix for issue #470: Right subclass instance in BaseGenericRelation - Thomas Jetzinger

• Add homepage url to sitemap.xml - Stephen McDonald

• Add handling for multi-tenancy in sitemap.xml - Stephen McDonald

• Check for published objects in Orderable.next/previous and allow kwargs to be used - Stephen Mc-
Donald

• Fixed margins on user-panel buttons - Stephen McDonald

• Added Displayable methods get_next/previous_by_publish_date, and used in blog post templates
for next/previous blog posts - Stephen McDonald

• More accurate template block name for blog post prev/next links - Stephen McDonald

• Fix showstopper on first comment due to url being clobbered and never reset - Grant Warren-Robertson

• No need to log user out for invalid admin - Stephen McDonald

• Check for login form instead of user perms when choosing which js to load in admin’s base template - Stephen
McDonald

1.17. Colophon 95

Mezzanine,

• Still log user out for invalid admin access - Stephen McDonald

• add environment setting to supervisor.conf to ensure locale is set correctly for gunicorn subprocesses -
Doug Evenhouse

• modify environment setting to inject locale specified in FABRIC setting - Doug Evenhouse

• Allows regular link Cmd+Click behaviour on OS X. - Regular click behaviour still applies. - Tested to work in
OS X Chrome 24 beta and Firefox 16 beta. - TODO: test on other platforms - Matt Stevenson

• Document how to run unit tests - Lorin Hochstein

• Don’t run view functions from page middleware when no page can be found, just pass through. Closes #476 -
Stephen McDonald

• Update jquery-ui to full 1.9.1, and include smoothness theme. This allows other apps to use a sin-
gle version of jquery-ui that is. known to be compatible with Mezzanine’s version of jquery. This is
jquery-ui-1.9.1.all, so all widgets are available and no. additional jquery code is needed. Also, the
full smoothness theme. is included. Third-party apps may include other themes - Ahmad Khayyat

• Added Django < 1.5’s adminmedia tag lib for 1.5 compatibility - Stephen McDonald

• Clean up dev server check - Stephen McDonald

• Allow category/tag titles to be used in blog_post_recent tag - Stephen McDonald

• Bump grappelli safe version to 0.2.11 - Stephen McDonald

• Bump filebrowser safe version to 0.2.13 - Stephen McDonald

• Added the setting UPLOAD_TO_HANDLERS for configuring the upload_to arg per file field. Closes #480 -
Stephen McDonald

• Added missing word in Blogger import notes - Matt Stevenson

• Change feedparser URL to authoritative fork. - The original author’s website(s) returns HTTP 410. - Refer to:
http://en.wikipedia.org/wiki/Mark_Pilgrim_(software_developer) - Matt Stevenson

• Resolves html entity output re: #482 - Matt Stevenson

• Generate better meta descriptions from markdown content. By using the newline character as the first pattern in
the generation of the meta description, markdown content (which normally lacks closing </p> tags) is processed
correctly - Eduardo Rivas

• Parse content with rich_text filter - Eduardo Rivas

• Moved import inside method - Eduardo Rivas

• Added optional parameters to search view - Eduardo Rivas

• Request filters: specified using REQUEST_FILTERS in settings.py - Chris Ravenscroft

• Added default setting for REQUEST_FILTERS - Chris Ravenscroft

• Works better with the proper values in settings.py - Chris F Ravenscroft

• Escape miscellaneous percent symbols in deployment templates; fixes #494 - Olivier Harris

• Docs corrections - Stephen McDonald

• Template tag implementation - Eduardo Rivas

• spam filter code moved back to views.py; using mezzanine’s module import mechanism - Chris Ravenscroft

• Added newline at the end of search_form.html - Eduardo Rivas

• JavaScript localization added for mezzanine.forms application - Oleg Churkin

96 Chapter 1. Table Of Contents

Mezzanine,

• Correct varible name in single model search - Eduardo Rivas

• Fix site perms template error in admin logout - Stephen McDonald

• Update notes in the project_template’s urls.py describing how the homepage object should not be
assigned to any menu templates - Stephen McDonald

• Add new field Displayable.in_sitemap which appears in the meta data section of each admin form, and
controls whether the object appears in sitemap.xml. Closes #499 - Stephen McDonald

• Added {% search_form %} section to the docs - Eduardo Rivas

• Update mezzanine/pages/admin.py. Remove a blank line so tests will pass - Kenneth Love

• Don’t assume {form, gallery} apps are installed. Importing these in core.management.__init__ causes
problems when they. aren’t installed. Instead, import them in the function where they’re. used - Gavin Wahl

• Adds the ability to move a page under a page with no children. I switched to using the jQuery nestedSortable
plugin instead of the. sortable plugin provided by jQuery UI, because Pages actually being in a. tree structure,
they need a tree editor. This commit temporarily breaks. some functionality such as remembering which pages
were open and closed - Rocky Meza

• fixed pagetree hiding of subpages - Rocky Meza

• Provide Mezzanine’s settings object to the COMPRESS_OFFLINE_CONTEXT setting for django-compressor.
Closes #505 - Stephen McDonald

• Fix the bugs that we had with nestedSortable - Gavin Wahl

• only .nestedSortable() the first ol - Gavin Wahl

• Fix front-end editing links for elements not positioned relative to the document. Use visibility hidden and jquery
offset function to ensure edit links are always positioned relative to the document and not relative to a positioned
ancestor - Jonathan Potter

• Clean up the new page sorting view - Stephen McDonald

• Remove old hack for initial page tree click bug that no longer exists. Closes #509 - Stephen McDonald

• Fix null handling in page sorting view - Stephen McDonald

• Specify widget for keywords field so it can be overridden properly. Closes #421 - Stephen McDonald

• Bug fix for wrong argument ordering for ssl cert handling in fabfile.py - David Hess

• Remove some commented out editable settings from the project template’s settings.pymodule, since defin-
ing these at the Python level can be confusing once the settings form in the admin is updated. Also made a note
of this scenario in the settings docs. Closes #515 - Stephen McDonald

• Add ssl port to nginx.conf. Closes #514 - Stephen McDonald

• Bump filebrowser-safe version to 0.2.14 - Stephen McDonald

• Don’t run redirects tests for Django 1.5 - Stephen McDonald

• More commit log filtering for changelog - Stephen McDonald

Version 1.2.4 (Sep 03, 2012)

• Added mezzanine.utils.urls.home_slug which will return the slug‘ arg of the ‘‘home
urlpattern, when a urlpattern is defined for an edtiable homepage. This ensures that we don’t hard-code the
URL for the homepage anywhere, and allows the editable homepage to work correctly when a SITE_PREFIX
setting is defined - Stephen McDonald

• Added autofocus to first field of the form - Renyi Khor

1.17. Colophon 97

Mezzanine,

• Added Html5Mixin to PasswordResetForm - Renyi Khor

• Add initial support for importing blog posts from posterous - David Novakovic

• Import comments for each post - David Novakovic

• Importer docs and small doco fix in code - David Novakovic

• Correct bad indentation - David Novakovic

• We only need the hostname if you have more than one posterous blog - David Novakovic

• Host is optional if you have one blog - David Novakovic

• Remove requests import from global scope - David Novakovic

• Make the page.in_menus check a bit more robust in the page_menu template tag, in case it doesn’t actually
have a value, which may have occured if migrations weren’t run when the in_menus field was added - Stephen
McDonald

• Allow non-page views to specify their own editable_obj context variable, which is then used to determine
the url for the admin link in the editable toolbar, falling back to the current page object. Allows for things like
blog posts and Cartridge products to contain a direct admin link from the ditable toolbar - Stephen McDonald

• Remove unused grappelli_safe urlpatterns - Stephen McDonald

• Remove unused import - Stephen McDonald

• Bump grappelli_safe version to 0.2.9 - Stephen McDonald

• Added accessor methods for blog post keywords and categories, so that when we use prefetch_related
with Django >= 1.4 we don’t need to iterate through every blog post to set up keywords and categories. Closes
#383 - Stephen McDonald

• Use the named home url for the View site link in the admin header. Closes #389 - Stephen McDonald

• Ensure consistent path separators in overextends template tag on Windows. Closes #386 - Stephen McDonald

Version 1.2.3 (Aug 22, 2012)

• Only hide delete button in the submit row for SingletonAdmin. Closes #376 - Stephen McDonald

• Correctly handle invalid form fields when save is clicked in SingletonAdmin. Closes #375 - Stephen McDonald

• Added Ken Bolton’s quote to docs homepage - mezz is django - Stephen McDonald

• Fix kwargs usage to work with other auth backends - David Novakovic

• Bump filebrowser version for security fix - Stephen McDonald

Version 1.2.2 (Aug 15, 2012)

• Update page menu handling in blog importer - Stephen McDonald

• Fix missing import in blog importer - Stephen McDonald

• Ensure extra_context in SingletonAdmin is always a keyword arg. Closes #370 - Stephen McDonald

• Clean up deploy doc - kevinlondon

• Initial layout for filtering RSS feeds by tag/category - Stephen McDonald

• Final bits for author/tag/category rss feeds in the blog app - Stephen McDonald

• Fixed auth for password reset - Stephen McDonald

98 Chapter 1. Table Of Contents

Mezzanine,

Version 1.2.1 (Aug 11, 2012)

• Bump min Django version to 1.3.3 - Stephen McDonald

• Fix dict handling in changelog builder (not actually used) - Stephen McDonald

• Don’t rebuild host var in static_proxy. Closes #361 - Stephen McDonald

• Fix bug in Page.get_ascendants() - pass a map to. PageManager.with_ascendants_for_slug
instead of a tuple - Alex Hill

• Added more tests for Page.get_ascendants() - Alex Hill

• Allow unicode cache keys - Stephen McDonald

• Add _order to Page.META.ordering - Ken Bolton

• Bump grappelli_safe version to 0.2.8 - Stephen McDonald

• Added a check in footer_scripts to only include the analytics tracking code if user is not part of the staff
team - Pedro Araújo

Version 1.2.0 (Aug 05, 2012)

• Redirect to next param or home on signup with pending account verification. Closes #289 - Stephen McDonald

• Prevent certain exceptions from swallowed by the cache middleware - Stephen McDonald

• Removed in_navigation and in_footer fields on the Page model, and replaced them with the
in_menus field, which stored a list of IDs specifying which menu templates the page should appear in. Menu
IDs are mapped to templates with the new PAGE_MENU_TEMPLATES setting - Stephen McDonald

• Template tag changes for the new page.in_menus field - Stephen McDonald

• Added mezzanine-twittertopic to third-party apps - Stephen McDonald

• Update fixtures for new Page.in_menus field - Stephen McDonald

• Move the page permissions section of the docs to underneath more important topics - Stephen McDonald

• Added page menu docs - Stephen McDonald

• Ensure unique slugs even when slug is provided. Closes #290 - Stephen McDonald

• Add a comment to the default urlconf about changing the admin urlpattern - Stephen McDonald

• Don’t allow pages to be added as children to a homepage page. Closes #286 - Stephen McDonald

• Added more notes around the new SITE_PREFIX setting, and refactored the code a bit - Stephen McDonald

• Remove old page admin code for forcing order/slug to be set - Stephen McDonald

• Only set COMMENTS_APP if not defined. Closes #294 - Stephen McDonald

• Allow internal PAGES_SLUG setting to be configurable - Stephen McDonald

• register ThreadedComment admin for mezzanine.generic COMMENTS_APP only - Dmitry Falk

• Fix for progressive jpgs in thumbnail template tag. Closes #268. Closes #295 - Stephen McDonald

• Don’t assume COMMENTS_APP is set - Stephen McDonald

• separated conf settings - Dmitry Falk

• add a block left_panel in base.html to make it easier to over-ride / over-extend - Sanjay B

1.17. Colophon 99

Mezzanine,

• Ensure urls are only added once to the list of items. It might happen that pages are listed multiple times since
for. instance a RichTextPage is also a Page and both are subclasses. of Displayable - Enrico Tröger

• Redirect the /account/ URL to the profile update form, and the /users/ URL to the logged in user’s profile. Closes
#291 - Stephen McDonald

• Clean up sitemap URL handling - Stephen McDonald

• Use publish_date for BlogPosts in /sitemap.xml - Enrico Tröger

• FORMS_USE_HTML5 is a core setting - Stephen McDonald

• Allow page objects with removed apps to still render - Stephen McDonald

• Ensure mezzanine’s apps have their settings loaded before any others - Stephen McDonald

• fix utils if mezzanine.accounts not installed - Dmitry Falk

• Fix reference to richtext filter settings defaults which are now in mezzanine.core - Stephen McDonald

• Fix serialization of Page.in_menus fields for dumpdata command. Closes #303 - Stephen McDonald

• Fix initial tuple for ignorable nexts in mezzanine.utils.login_redirect - Stephen McDonald

• Make gunicorn names in supervisor project specific. Closes #285 - Stephen McDonald

• Added i18n cache key suffix - Renyi Khor

• Fix edge case in url templatetag causing ViewDoesNotExist error. It happened when
ACCOUNTS_PROFILE_VIEWS_ENABLED was set to False. and profile app called profile (same as
url name) was added. to INSTALLED_APPS - Michał Oleniec

• Fix TypeError on ProfileFieldsForm save. Passing cleaned_data from ProfileForm into ProfileFieldsForm.
caused doubled validation which in case of ForeignKey. field tried to get instance by field value which was
instance already. (excepting int from request.POST) - Michał Oleniec

• Add ACCOUNTS_PROFILE_FORM_FIELDS_ORDER setting - Michał Oleniec

• Add customizable profile form. - new setting ACCOUNT_PROFILE_FORM. - add get_profile_form help
method. - add generic form getter into views. - update mezzanine.account.templatetags - Michał
Oleniec

• Make editable.js work with JQuery.noConflict() - Adam Brenecki

• changes to detect the appropriate page when making the homepage part of the page tree. Old code did not detect
the slug appropriatley forcing you to make the slug / in the admin area - James Page

• Make some template tags more robust (keywords_for and editable) by failing silently when given an empty
variable, as the case may be in the blog templates when no blog page object exists, so we don’t need to check
for this case in the templates themselves - Stephen McDonald

• In the overextends template tag, only remove template paths from the list of available paths when the first call
to find_template is made in each call to get_parent, otherwise every second parent template found is
skipped - Stephen McDonald

• Bump filebrowser_safe to 0.2.9 - Stephen McDonald

• Switch page processor execution order so custom slug processors are executed before model processors - Hakan
Bakkalbasi

• Change @processor_for registration logic so most recently registered page processors are run first - Hakan
Bakkalbasi

• For custom hompegae slug lookup in PageMiddleware, fix missing import and only call resolve once - Stephen
McDonald

100 Chapter 1. Table Of Contents

Mezzanine,

• Hash cache keys when talking directly to the cache API, to avoid keys longer than the backend supports (eg
memcache limit is 255) - Stephen McDonald

• overextends tag path fix for uwsgi - Stephen McDonald

• Added new optional field MetaData._meta_title for overriding HTML title tag value, accessible via
MetaData.meta_title, which will return the string version of an instance of _meta_title is not pro-
vided - Stephen McDonald

• Add parent hierarchy to page template rendering - Ken Bolton

• Added rollback command for deploys - Stephen McDonald

• Only pip install requirements if the requirements file has changed - Stephen McDonald

• Use file.url instead of file.path to auto-generate descriptions for gallery image, as remote storage
backends such as S3BotoStorage do not support the file.path method - Hakan Bakkalbasi

• Added Django’s tz context processor to project_template.settings. Closes #319 - Stephen McDon-
ald

• Move settings specific to the pages app into their own defaults module, and add PAGE_MENU_TEMPLATES
commented out in project_template’s settings.py along with other common settings - Stephen
McDonald

• Added missing defaults module for pages - Stephen McDonald

• Don’t use the timezone context processor on Django 1.3 - Stephen McDonald

• Update docs for page hierarchy. Fix page template hierarchy issues around content_model - Ken Bolton

• Remove print statement - Ken Bolton

• Still call contribute_to_class for dynamic fields in mezzanine.generic even when frozen by
south. Closes #321 - Stephen McDonald

• Improve page template hierarchy documentation - Ken Bolton

• In fabfile, always update requirements if any are unpinned - Stephen McDonald

• Fix indentation. <leader>-fef does not understand rst! - Ken Bolton

• Remove global from get_parents - Ken Bolton

• Adds get_ascendants() to Page. This returns all pages along the path from the root of the Page tree to.
this page. The value is pre-calculated in PageMiddleware - Alex Hill

• Add comments and remove an obsolete variable - Alex Hill

• Ensure editable integer settings always have a value. Closes #325 - Stephen McDonald

• Fix regression in keywords_for tag for class args. Closes #326 - Stephen McDonald

• Remove unused import - Stephen McDonald

• Remove HTML filtering from tincymce setup since we’re filtering server-side - Stephen McDonald

• Allow comments in HTML filtering - Stephen McDonald

• Change build IRC notifications to only occur if the build status changes - Stephen McDonald

• Upgrade manage.py to the new cli handler, and throw out some old dev code. Closes #330 - Stephen McDon-
ald

• Further mimic Django’s new project layout - Stephen McDonald

• Addedd a note to the deployment docs describing how alternative web servers and DBs can be used - Stephen
McDonald

1.17. Colophon 101

Mezzanine,

• Prevent docs build import errors when optional dependencies for the rss blog importer aren’t installed - Stephen
McDonald

• Add links in the depooyment docs to the web and database server sections in the Django docs - Stephen Mc-
Donald

• Save a query in page.get_ascendants - Stephen McDonald

• Update url for mezzanine-stackato - Stephen McDonald

• Fix tests asserting number of queries used - Stephen McDonald

• Move ascendant page lookup by slug, from PageMiddleware into a method on a new PageManager manager
for the Page model, and use it as the first attempt at loading ascendants in Page.get_ascendants, before
falling back to recursive queries in the case of a custom slug in the ascendants chain - Stephen McDonald

• Add tests for the new page ascendant lookup methods - Stephen McDonald

• add ADMIN_THUMB_SIZE settings - Dmitry Falk

• Bump filebrowser_safe to 0.2.10 - Stephen McDonald

• Added some notes about parent template selection in the page view - Stephen McDonald

• Don’t use with_ascendants_for_slug in Page.get_ascendants if a slug hasn’t been created yet
- Stephen McDonald

• Make relation check in signals for generic fields more robust - Stephen McDonald

• Different attempt at making relation check in signals for generic fields more robust - Stephen McDonald

• Allow static proxy URL to be configured - Stephen McDonald

• Also rename static_proxy URL default in case anyone else’s web server alias is slightly off - Stephen
McDonald

• Preserve slugs & URLs when pages are moved - Alex Hill

• Remove obsolete reset_slugs() - Alex Hill

• Check overridden() when changing slug - Alex Hill

• In set_parent(), call save() before get_slug() - Alex Hill

• Make slug changes propagate to all descendant pages - Alex Hill

• use ugettext_lazy strings for settings form - Dmitry Falk

• Allow unicode twitter search queries - Stephen McDonald

• static_proxy only needed a rename, not to be congifurable - Stephen McDonald

• Fix menu test to work with lazy unicode settings - Stephen McDonald

• Added new, working, repo for mezzanine-openshift. Since the old one doesn’t work anymore and is unmain-
tained - Isaac Bythewood

• Fix collision of all task with built-in all function - Lorin Hochstein

• Fixed duplicate posts, –noinput handling and entity decoding in base blog importer - Stephen McDonald

• Restore automatic redirects creation for the wordpress blog importer - Stephen McDonald

• Add day parts to the date urlpattern for blog posts - Stephen McDonald

• Fix bug in Page.set_parent() when no parent set - Alexander Hill

• Allow passing None to Page.set_parent() - Alexander Hill

102 Chapter 1. Table Of Contents

Mezzanine,

• Add tests for Page.get_slug() and Page.get_parent() - Alexander Hill

• Swallow import exception when importing settings.py from fabric - Lorin Hochstein

• Don’t mask import errors in the actual call to set_dynamic_settings - Stephen McDonald

• add ajax hook for generic rating - Dmitry Falk

• Fix references to the recent_comments template tag - Enrico Tröger

• Fix bug in slug handling when adding a new page - Alex Hill

• Fix #349 - regression in set_page_permissions - Alex Hill

• Madee the labels and help text for the email fields more descriptive - Stephen McDonald

• Added mezzanine-events to third-party apps list - Stephen McDonald

• Added FAQ to the docs covering the HTML filtering settings - Stephen McDonald

• Add a setting to send notification mails to MANAGERS when a new comment is posted - Enrico Tröger

• PageAdmin now respects excluded fields - Aaron Merriam

• Fix #348, RichTextFields in IE - Ken Bolton

• Change the rating ajax response to return the new rating - Stephen McDonald

• Added the bool setting PAGES_PUBLISHED_INCLUDE_LOGIN_REQUIRED which when set to False (de-
fault) will exclude pages with login_required set to True in PageManager.published. This affects
the page_menu template tag which renders menus, and pages listed in search results - Stephen McDonald

• Added get_next_by_order and get_previous_by_ordermethods to the Orderable model - Stephen
McDonald

• Allow PAGES_PUBLISHED_INCLUDE_LOGIN_REQUIRED handling to be overridden by callers to
PageManager.publsihed for cases when they want to deal with login_required manually, such as
in the case of PageMiddleware - Stephen McDonald

• Marked fabfile functions explicitly with task decorator, and added a custom docs generator for each task -
Stephen McDonald

• Updated auto-generated docs - Stephen McDonald

Version 1.1.4 (Jun 28, 2012)

• Add custom introspection rules that prevent duplicate field creation on dynamic fields during migration - Stephen
McDonald

• Use filebrowser field’s format attribute rather than extensions. Closes #287 - Stephen McDonald

Version 1.1.3 (Jun 26, 2012)

• fix spacing - Dmitry Falk

• Allow rel attributes in anchor tags - Stephen McDonald

• Don’t cast to list in paginate - Stephen McDonald

• Remove redundant ampersands in pagination links - Stephen McDonald

• Update the configuration docs example to use author/blooks instead of gallery/images, and add the new options
for registered settings, choices and append - Stephen McDonald

• Allow default twitter feed to be managed via admin settings - Stephen McDonald

1.17. Colophon 103

Mezzanine,

• Raise NotImplementedError on Displayable subclasses that don’t implement get_absolute_url - Stephen
McDonald

• Add new setting SITE_PREFIX to configure a custom prefix. This is useful if Mezzanine doesn’t run at the
root of the domain - Enrico Tröger

• Add and use utils.urls.get_page_slug_from_path() to handle non-root configurations. For the
pages app, we need to handle removing the SITE_PREFIX and PAGES_SLUG if. they are set - Enrico Tröger

• Set is_current on Pages when added to context in PageMiddleware - Alex Hill

• Permit disabling page processors at external apps’ urls in the page tree - Alex Hill

• Refactored overextends template tag to not depend on template origins since they’re not available with DEBUG
off - Stephen McDonald

• Fix variable resolution for as_tag template tags - Stephen McDonald

• Added template tags for the various account forms - Stephen McDonald

• Updated packages docs - Stephen McDonald

• Bump grappelli_safe to 0.2.7 for admin column sorting fix - Stephen McDonald

• Clean up exact page matching for page processors - Stephen McDonald

• Updated jQuery Form Plugin - Renyi Khor

• Fix _current_page in middleware - Stephen McDonald

• Reorganised page middleware for fewer queries and readability - Alex Hill

• page middleware: use request.path_info - Dmitry Falk

• Correctly handle root URL - Alexander Hill

• Add check for page_branch_in_footer. Without this check, footer.html is rendered for every page
in the tree,. returning an empty string - Alexander Hill

• Add perms to existing context page instead of overwriting it. Previously the template tag
set_page_permissions would retrieve the. page’s content model, set the perms attribute on it, and then
replace. the page object in the context with the retrieved object. Setting perms. on the existing page object
instead preseves attributes set by set_helpers - Alexander Hill

• Check has_children before calling page_menu. This saves a lot of template renders in wide page trees -
Alexander Hill

• backport of django-forms-builder signals to mezzanine.forms - Brian Schott

• set mimetype to empty string in case path is not found - Brian Schott

• Handle no blog page existing for meta keywords in the blog list template - Stephen McDonald

• Fix path lookup for Python 2.5 - Stephen McDonald

• Handle FileBrowseField args in Django FileField fallback - Stephen McDonald

• Use image formats for image FileBrowse fields - Stephen McDonald

• Bump filebrowser_safe to 0.2.7 - Stephen McDonald

• Cleaned up blog import redirect creation - Zachary Gohr

• Bugfix: Account form validation errors on non-html5 browsers - Renyi Khor

• added in-navigation test to level 1 - Brian Schott

• fix migration without blog app - Dmitry Falk

104 Chapter 1. Table Of Contents

Mezzanine,

• Ensure Mezzanine’s auth backend is enabled if mezzanine.accounts is installed. Closes #281 - Stephen
McDonald

• Eval settings choices when generating settings docs - Stephen McDonald

Version 1.1.2 (Jun 05, 2012)

• Fix slug handling in page middleware for homepage as page object - Stephen McDonald

• add some verbose names - Dmitry Falk

Version 1.1.1 (Jun 04, 2012)

• Don’t assume rating field is named rating - Stephen McDonald

• Handle PAGES_SLUG in the page middleware - Stephen McDonald

• Make the creation of PAGES_SLUG not dependant on the position of the blog urlpatterns in urlpatterns created
before the page urlpatterns - Stephen McDonald

• Fix quoting unicode thumbnail filenames - Stephen McDonald

• Move lookup of page subclasses into classmethod Page.get_content_models, and call
select_related on all page subclasses in the page_menu template tag when used for the admin
page tree, since we need to touch all the related content type instances to check page paermissions - Stephen
McDonald

• Don’t assume request is available in page.set_menu_helpers - Stephen McDonald

• Move cache-busting querystring into mezzanine.utils.cache.add_cache_bypass and apply it to
comments and ratings redirects so that posted content appears immediately - Stephen McDonald

Version 1.1.0 (Jun 03, 2012)

• Added MetaData.gen_description bool field for controlling whether description fields are automati-
cally populated via MetaData.description_from_content - Stephen McDonald

• Emit the comment_was_posted signal in the comments view - Stephen McDonald

• Correctly handle model field defaults in the quick blog post form - Stephen McDonald

• Added the setting COMMENTS_ACCOUNT_REQUIRED, which when True, will store an unauthenticated user’s
comment in the session and redirect to login/signup, and save their comment once they’re authenticated - Stephen
McDonald

• Use setting names as labels if they’re missing - Stephen McDonald

• Wrap data access in migrations with checks against the dry_run arg - Stephen McDonald

• added missing fr django.mo for the conf app - Nicolas Perriault

• Only pre-populate name in the comment form with the user’s username if it’s not their email address, which it
is by default - Stephen McDonald

• Always use the name from the comment form, rather than the user’s username, since by default it’s their email
address - Stephen McDonald

• Use comments.select_related(user) when loading comments, since Django’s Comment model will
query for the user each time a comment is loaded - Stephen McDonald

1.17. Colophon 105

Mezzanine,

• Added the setting ACCOUNTS_VERIFICATION_REQUIRED which when set to True, will create new ac-
counts as inactive, and send the user an email with a verification link to activate their account - Stephen McDon-
ald

• Remove invalid examples of gettext in settings module - Stephen McDonald

• Fixed slug-based template name loading for non-ascii slugs - Stephen McDonald

• Fix unencoded template names from slugs in blog also - Stephen McDonald

• Added the SLUGIFY which takes a dotted Python path to the slugify function to use when converting strings
into slugs. Defaults to mezzanine.utils.urls.slugify_unicode which allows for non-ascii URLs
- Stephen McDonald

• Use the text required for the help text for required fields in mezzanine.forms when no help text is entered
- Stephen McDonald

• Add HTML5 features to the comments form - Stephen McDonald

• Fixed assignment of page permissions in the admin page tree - Stephen McDonald

• Hide the delete button for mezzanine.core.admin.SingletonAdmin - Stephen McDonald

• Added the view mezzanine.core.static_proxy which is used to serve TinyMCE plugin templates, and
uploadify’s SWF, as these break with cross-domain errors when STATIC_URL is an external host - Stephen
McDonald

• Fix with statement in Python 2.5 - Stephen McDonald

• Bump grappelli and filebrowser versions - Stephen McDonald

• Fix grappelli version - Stephen McDonald

• Moved all user account features into a new app mezzanine.accounts - Stephen McDonald

• Handle non-ascii filenames on non-utf8 filesystems. Convert filenames and warn when saving them, and raise
exceptions if trying to access them and the filesystem encoding has changed. Closes #186 - Stephen McDonald

• Add new exceptions module - Stephen McDonald

• Added the decorator mezzanine.pages.decorators.for_page, which can be used for wrapping
views that map to protected pages. The decorator adds the page instance to the template context, and han-
dles login redirects if page.login_required is True. Applied to the blog views, and also added handling
for login_required on the blog page in the blog feeds, which if True, stops the feeds from producing any
blog posts or meta data - Stephen McDonald

• Grammar fix - Stephen McDonald

• Don’t disconnect the default site signal if we’re not connecting our own one - Stephen McDonald

• Only try and modify template lists when they’re available - not the case when the response is pulled from cache
- Stephen McDonald

• Added the ifisinstalled template tag to replace the is_installed template filter, which properly handles
include tags when the given app is not installed. Closes #181 - Stephen McDonald

• Allow pages without children to serve as targets for sortable - Aleksandr Vladimirskiy

• Fixed regression in admin login interface selector middleware. Closes #192 - Stephen McDonald

• Fixed ifinstalled template tag so that it removes all tokens, not just include tags. Closes #193 - Stephen McDon-
ald

• Use prefetch_related in Django 1.4 for categories and keywords in the blog post list view. Closes #190
- Stephen McDonald

106 Chapter 1. Table Of Contents

Mezzanine,

• Backout admin tree empty child fix for now as it doesn’t work quite correctly - Stephen McDonald

• Fixed settings docs generator. Closes #189 - Stephen McDonald

• Refactoring of blog feed view. Returns a http 404 instead of http 500 when the feed does not exists - Thomas
Wajs

• Clean up the blog feeds - Stephen McDonald

• Dev started in 2009 - Stephen McDonald

• Added fix for thumbnail generation which would previously not work for images which contained special char-
acters in the file path and used url encoding - Kowaleski, Jason

• Added page import to wordpress - Alvin Mites

• restore utils/device for fork - Alvin Mites

• Added blog post content for the feed description - Thomas Wajs

• Allow the homepage to be login protected - Stephen McDonald

• Added handling for filebrowser’s FileBrowseField directory arg. Closes #202 - Stephen McDonald

• Increased field lengths for Displayable.title from 100 to 500 and Displayable.slug from 100 to
2000 - Stephen McDonald

• Move ajax csrf setup into its own JS file that’s loaded even when a popup interface is loaded. Closes #206 -
Stephen McDonald

• Remove redundant cast - Stephen McDonald

• Added the new app mezzanine.accounts, which handles user login, signup, update, password reset, pro-
file, and integration with Django’s user->profile features - Stephen McDonald

• Use ifinstalled for the accounts user panel - Stephen McDonald

• Added some commas to the username format error - Stephen McDonald

• Give the admin drop-down menu elements the same hover/click state as their anchors. Also closes #208 -
Stephen McDonald

• Bump filebrowser-safe to 0.2.5 - Stephen McDonald

• Properly handle optional file upload fields in mezzanine.forms - Stephen McDonald

• clarify south usage in overview - Brian Schott

• Fix user_panel.html layouts - Stephen McDonald

• Manually assign the parent to each page in the page_menu template tag, to prevent queries being triggered if
they’re accessed - Stephen McDonald

• Update notes about dependencies, and remove notes about setuptools - Stephen McDonald

• fixed docstring error in mezzanine_tags.ifinstalled - Brian Schott

• Added dynamic validation for content in DisplayableAdmin based on the value of status - Stephen McDonald

• Added handling for slug-based template when the homepage is a page object - Stephen McDonald

• Add handling for Django 1.4’s timezone support - Stephen McDonald

• Remove DEBUG check from site/content signals, and prompt the user for the site domain in interactive mode,
with local/live fallbacks for non-interactive mode - Stephen McDonald

• Added optional support for django-compressor - Stephen McDonald

• Fix thumb_url for root images on remote CDNs - Stephen McDonald

1.17. Colophon 107

Mezzanine,

• Remove old fixes for Postgres and timezones - Stephen McDonald

• Allow initial dicts to be used for forms in mezzanine.forms - Stephen McDonald

• Update to new gravatar_url in comments admin - Stephen McDonald

• Use Django 1.4’s bulk_create when creating field entries in mezzanine.forms - Stephen McDonald

• Added multi-tenancy support. A threadlocal object is used to store the current request, and a custom manager
for site-related models is used, that checks for the current request and matches the host to a site domain. Current
site can also be defined by a session var (for the admin), and an environment var (for management commands)
- Stephen McDonald

• Made some visual enhancements to the settings admin, added support for settings with choices, and added the
RICHTEXT_FILTER_LEVEL setting with choices for controlling the level of HTML filtering that occurs on
the RichTextField - Stephen McDonald

• Proper timezone support for tweets - Stephen McDonald

• Update docs on multi-site to describe the new multi-tenancy approach - Stephen McDonald

• Use default STATICFILES_FINDERS setting when setting up compressor - Stephen McDonald

• Update travis config to test multiple Django versions - Stephen McDonald

• Fix Django install for travis - Stephen McDonald

• Added IRC notifications for travis builds - Stephen McDonald

• added remote url config script - Kent Hauser

• improved collecttemplates conflict messages - Kent Hauser

• remove git.config.sh for pull request - Kent Hauser

• Added mezzanine.pages.middleware.PageMiddleware, which handles loading the current
page, running page processors, and checking page.login_required. Previously handled in
mezzanine.pages.views.page, but move to middleware to allow pages to point to non-page urlpatterns,
without any configuration via the now redundant page_for decorator. The page view remains for handling
template selection and 404 handling - Stephen McDonald

• Added fabfile and configs for server setup and deploys - Stephen McDonald

• allow H1s in tinymce - lexual

• Handle homepage as page object in the new age middleware - Stephen McDonald

• Added a Link content type for creating external URLs in the page tree - Stephen McDonald

• Update Van’s title - Stephen McDonald

• Added the setting ACCOUNTS_MIN_PASSWORD_LENGTH for minimum password length for user accounts -
Stephen McDonald

• Added the setting ACCOUNTS_PROFILE_FORM_EXCLUDE_FIELDS for excluding profile model fields from
the profile form - Stephen McDonald

• Ensure min password length in accounts tests - Stephen McDonald

• Hides pagination if only one page - Renyi Khor

• Allow auth.User fields to be excluded from the profile form via the
ACCOUNTS_PROFILE_FORM_EXCLUDE_FIELDS setting - Stephen McDonald

• Initial docs for the bundled fab deployments - Stephen McDonald

• fix i18n settings title in admin - Dmitry Falk

108 Chapter 1. Table Of Contents

Mezzanine,

• Don’t show excluded profile fields in profile view - Stephen McDonald

• Allow existing virtualenvs to be removed/replaced in fabfile - Stephen McDonald

• Added handling for settings with choices in settings doc generator - Stephen McDonald

• Added docs for mezzanine.accounts - Stephen McDonald

• Added optional quality arg to be passed to the thumbnail tag, and changed default from 100 to 95 as per PIL
docs. Closes #221 - Stephen McDonald

• Ensure responses in PageMiddleware are valid responses for adding context to via page processors, eg not
redirects - Stephen McDonald

• Added the {% overextends %} built-in template tag which allows templates to be both overridden and extended
at the same time - Stephen McDonald

• Prettify fab outout - Stephen McDonald

• In-line edit enhancements re-align on show/resize/expand - Van Nguyen

• Added body resize event for triggering realign of edit controls - Stephen McDonald

• added dropdown menu support - Brian Schott

• added default navlist sidebar - Brian Schott

• only activate current page - Brian Schott

• Fix original image links in gallery template - Stephen McDonald

• Refactored fabfile: - Move all templates into a config. - Move template upload and optional reload into deploy.
- Added crontab handling - Stephen McDonald

• Add proc name to gunicorn conf - Stephen McDonald

• Clean up the new primary dropdown menu - Stephen McDonald

• Fixed non field errors in fields_for template tag - Stephen McDonald

• Merge navlist into tree menu - Stephen McDonald

• In fabfile, prompt to create project if it doesn’t exist on deploy - Stephen McDonald

• Require hosts in fabfile - Stephen McDonald

• Ensure fabfile has hosts, and imports settings from the current path - Stephen McDonald

• Clean up ^M characters at end of lines using dos2unix and find: find . -type f -exec egrep -q $’r$’ {} ; -exec
dos2unix {} ; - Thomas Lockhart

• Fix missing tag - Pavel Ponomarev

• fix get_absolute_url for homepage - Dmitry Falk

• Allow superuser password to be defined in fabric settings, and create superuser if defined - Stephen McDonald

• Added the setting ACCOUNTS_PROFILE_VIEWS_ENABLED for explicitly enabling public profile pages,
which defaults to False - Stephen McDonald

• Only validate fabric settings when fab is run - Stephen McDonald

• Shadow the admin password in fabfile - Stephen McDonald

• Add handling for the hotfix releases in the changelog builder - Stephen McDonald

• Allow large uploads in nginx.conf - Stephen McDonald

• Don’t fail on fabfile import (for docs build) - Stephen McDonald

1.17. Colophon 109

Mezzanine,

• Added owner/mode handling for templates in fabfile - Stephen McDonald

• Fix keyword queries in blog listing - Stephen McDonald

• Use standard page in mobile blog post listing - Stephen McDonald

• Add a cache-busting querystring to device switching - Stephen McDonald

• add some verbose names for blog - Dmitry Falk

• Remove deprecated clear attr from br tags. Closes #241 - Stephen McDonald

• Added some more notes around twitter cron jobs - Stephen McDonald

• Fixed docstring - Stephen McDonald

• Sync .po files - Sebastián Ramírez Magrí

• Fixed initial values for entry instances on multi-value fields - Stephen McDonald

• Better locale error messages - Stephen McDonald

• Added Mezzanine’s own cache system - combination of Django’s cache middleware, two-phased render cache,
and mint cache - Stephen McDonald

• Added robots.txt/favicon.ico handling in nginx.conf - Stephen McDonald

• Added docs for the new cache middleware - Stephen McDonald

• Clean up the deprecated middleware classes - Stephen McDonald

• Default CACHE_MIDDLEWARE_SECONDS to a minute in deployed settings - Stephen McDonald

• Add SECURE_PROXY_SSL_HEADER to deployed settings. Closes #246 - Stephen McDonald

• Fix var names in deploy configs - Stephen McDonald

• Cleaned up descriptive text - Ross Laird

• Added “timesince” to displayable - Renyi Khor

• Added thumbnail to blogpost admin - Renyi Khor

• Add SSL config to nginx.conf and self signed cert setup to fabfile - Stephen McDonald

• git pull -f in deploy - Stephen McDonald

• Added mezzanine.utls.models.AdminThumbMixin which provides a method for admin classes to
refernce in their list_display that will render a thumbnail. Used for BlogPost.featured_image
and Product.image in Cartridge - Stephen McDonald

• Revert cache changes to Twitter queries - since authenticated users bypass the cache, and the Twitter call will
generate a lot of queries - Stephen McDonald

• Quote thumb names in thumbnail template tag - Stephen McDonald

• Use cache backend for sessions in deployed settings - Stephen McDonald

• Don’t remove key/cert when blowing away a deployed instance in fabfile - Stephen McDonald

• Use the parent breadcrumb in blog templates, so as not to assume a single root blog page - Stephen McDonald

• Rewrite Page.set_menu_helpers to use the currently viewed page instead of the current URL - Stephen
McDonald

• Ensure Page.get_absolute_url returns absolute URLs for Link page types - Stephen McDonald

• Allow overridden pages (eg the blog) to be deleted and have child pages added to - Stephen McDonald

• Recompile all .mo files - Closes #250. Closes #251 - Stephen McDonald

110 Chapter 1. Table Of Contents

Mezzanine,

• Right-align drop-down menus when .pull-right is used - Stephen McDonald

Version 1.0.10 (Apr 28, 2012)

• Bump filebrowser-safe for security fix to 0.2.6 - Stephen McDonald

Version 1.0.9 (Apr 27, 2012)

• Add HTML sanitizing on RichTextField instances. Closes #211 - Stephen McDonald

Version 1.0.8 (Mar 24, 2012)

• Fixed .navbar .container responsive width - Stephen McDonald

• Added default blank favicon and replace Bootstrap’s collapse JS with all Bootstrap JS - Stephen McDonald

• Added nav dividers in primary menu - Stephen McDonald

• Fixed leftover tag loading in form response emails - Stephen McDonald

Version 1.0.7 (Mar 24, 2012)

• Fixed body_id block - Stephen McDonald

• Upgrade Bootstrap to 2.0.2 - Stephen McDonald

Version 1.0.6 (Mar 22, 2012)

• Fixed draft status for quick blog form in dashboard. Closes #172 - Stephen McDonald

• Format newlines in the quick blog form since the expected format is HTML - Stephen McDonald

• Markup validation improvements - Paolo Dina

Version 1.0.5 (Mar 20, 2012)

• Fixed admin navigation showing in inline filebrowser popups when called from TinyMCE - Stephen McDonald

• Bump filebrowser_safe to 0.2.3 - Stephen McDonald

Version 1.0.4 (Mar 19, 2012)

• Bump dependencies - Stephen McDonald

Version 1.0.3 (Mar 19, 2012)

• Don’t restrict image width in default css since it’s now responsive - Stephen McDonald

• Updated templates_for_host to insert default templates after the associated custom template, rather than
putting all defaults at the end - Josh Cartmell

• Updated templates_for_device to insert default templates after the associated custom template, rather
than putting all defaults after all custom templates - Josh Cartmell

1.17. Colophon 111

Mezzanine,

• Disable nav in popups. Closes #152 - Stephen McDonald

• Refactored model graph building in docs - call management command natively, and handle all the error condi-
tions - Stephen McDonald

• Update mezzanine/forms/forms.py - Magic

• Update mezzanine/blog/locale/ru/LC_MESSAGES/django.po - Mikhail

• Update mezzanine/conf/locale/ru/LC_MESSAGES/django.po - Mikhail

• Internal refactoring of abstract models in mezzanine.core. Move admin_link from Displayable
to Slugged, since it is more closely related to URLs. Move description_from_content from
Slugged to MetaData, since it is more related to description on MetaData. Don’t rely on title in
description_from_content, just use string version of an instance, which is title anyway via Slugged
- Stephen McDonald

• Added handling for having ‘save’ and ‘save and continue’ in SingletonAdmin - Stephen McDonald

• Make pillow an optional dependency, only used when PIL isn’t installed - Stephen McDonald

• Added bootstrap’s collapsible navbar, upgraded jQuery to 1.7, and added a setting JQUERY_FILENAME so that
the jQuery file/version is stored in one place - Stephen McDonald

• Fix cyclic import in Django 1.4 - Stephen McDonald

• Don’t abort on graph generation in docs build, since we can use the repo version of it - Stephen McDonald

• Pin exact versions in dependencies - Stephen McDonald

• Fix form export encoding - Stephen McDonald

• Updated database settings to use prefixed format. unprefixed format removed from django 1.4. Added
django.db.backends. to. settings.py and local_settings.py templates - Patrick Taylor

• Clean up db settings and remove helpers from mezzanine.utils.conf - Stephen McDonald

• Added more info and examples of different homepage patterns in project_template/urls.py - Stephen
McDonald

• Added FAQs section to docs - Stephen McDonald

• Skinned the docs to be in line with the Mezzanine project’s homepage styling - Stephen McDonald

• Added storage API to thumbnail template tag, and zip upload for galleries - Stephen McDonald

• Fix use of with statement for Python 2.5 - Stephen McDonald

• Use django’s conf at the module level in mezzanine.core.fields, so that fields can be loaded prior to
mezzanine.conf being loaded - Stephen McDonald

• Exclude static dir from package - Stephen McDonald

• Added the collecttemplates management command, for copying all (or app specific) templates to a project -
Stephen McDonald

• Actual collecttemplates command - Stephen McDonald

• Added secure arg and default expiry seconds to mezzanine.utils.views.set_cookie - Stephen Mc-
Donald

• Added mezzanine.utils.email.send_mail_template for sending templated email, and integrated
with mezzanine.forms. Closes #165 - Stephen McDonald

• Missing files - Stephen McDonald

• Fixed weird double-click bug in admin page tree - Stephen McDonald

112 Chapter 1. Table Of Contents

Mezzanine,

• Fixed regression in orderable inlines from upgrading to latest jQuery - Stephen McDonald

• Fixed regression in keywords field from upgrading to latest jQuery - Stephen McDonald

• Fixed signature change in Django 1.4’s admin change_view - Stephen McDonald

• Fixed admin login redirect for non-login view URLs - Stephen McDonald

• Fixed removed project_template setup in mezzanine-project. Closes #167 - Stephen McDonald

• Use operating system separator - Chris Trengove

• Bump dependencies - Stephen McDonald

Version 1.0.2 (Mar 06, 2012)

• Update setup to exclude new dev db name - Stephen McDonald

Version 1.0.1 (Mar 06, 2012)

• Add a patch to the changelog generator for the versioning blunder - Stephen McDonald

• Added a new middleware which will serve templates from a theme, based upon the host accessing the site - Josh
Cartmell

• Separated the logic a little more to make host_theme_path more reusable - Josh Cartmell

• Remove mention of site_media which no longer applies with staticfiles used - Stephen McDonald

• Avoid file-in-use exception when deleting (on Windows) - Chris Trengove

• Added quote by Antonio Rodriguez and one line bio for each of the quoters - Stephen McDonald

• Fix a couple of test failures on Windows - Chris Trengove

Version 1.0.0 (Mar 03, 2012)

• Fixed runserver arg parsing for grappelli media hosting. Closes #110 - Stephen McDonald

• Added a note to the docs about not subclassing RichTextPage - Stephen McDonald

• Raise a more meaningful error message when someone tries to subclass a custom content type, which isn’t
supported - Stephen McDonald

• Every model mixing Slugged in with a cyclical dependency fails with dumpdata in current Django (including a
tree with a fix applied for Django ticket #14226). The natural key declared in Slugged is the culprit - derkaderka

• Added category support - Josh

• Bookmarks are removed from grappelli_safe - Stephen McDonald

• Fixed duplicate keyword handling regression and added support for automatically removing unused keywords.
Closes #116 - Stephen McDonald

• Added patching of django.contrib.admin.site in mezzanine.boot to defer certains calls to un-
register/register to work around some loading issues for custom model fields - Stephen McDonald

• Removed unused import - Stephen McDonald

• Don’t use form email field as from address if FORMS_DISABLE_SEND_FROM_EMAIL_FIELD setting is
True - John Barham

• Register FORMS_DISABLE_SEND_FROM_EMAIL_FIELD in mezzanine.conf - Stephen McDonald

1.17. Colophon 113

Mezzanine,

• Fixed migration forms/0003 failure for Postgres - Luke Plant

• Fixed dependencies of migrations, so that ’./manage.py migrate’ works even if starting from scratch - Luke
Plant

• Added installation instructions for adding Mezzanine to an existing project - Luke Plant

• Added a generic RSS blog importer - Stephen McDonald

• Added a type attribute to fields in mezzanine.forms.forms.FormForForm for use in styling, and re-
moved CSS class assignments - Stephen McDonald

• Addedmezzanine.mobile commented out to INSTALLED_APPS in
project_template.settings - Stephen McDonald

• Fixed authentication check in base admin template - Stephen McDonald

• Ported default templates from 960.gs to Twitter Bootstrap - Stephen McDonald

• Merge paging links settings into a single MAX_PAGING_LINKS setting - Stephen McDonald

• Cleaned up settings ordering - Stephen McDonald

• Stub out empty comment forms in the context for the comments test - Stephen McDonald

• Don’t show help text for form fields with errors assigned, and show all errors rather than just the first - Stephen
McDonald

• Added docs for the RSS importer - Stephen McDonald

• Update the docs copyright date and fix some warnings - Stephen McDonald

• Regenerated settings docs - Stephen McDonald

• Fix template path for cartridge hook - Stephen McDonald

• Added Number and URL field types to mezzanine.forms - Stephen McDonald

• Unicode fixes for MS Excel in forms export - Stephen McDonald

• Added a work-around for performance issues with jQuery.ui.sortable and large page trees - Stephen
McDonald

• Add pillow as a dependency for getting PIL install properly - Stephen McDonald

• Added handling in PageAdmin for picking up any extra fields defined by subclasses of Page, when the admin
class being used doesn’t implement any fieldsets - Stephen McDonald

• Added a wrapper field mezzanine.core.fields.FileField for filebrowser’s FileBrowseField, falling
back to Django’s FileField if unavailable - Stephen McDonald

• Changed the filebrowser urlpattern to match the admin menu name - Stephen McDonald

• Changed thumbnailing to use a separate directory defined by the setting THUMBNAILS_DIR_NAME - Stephen
McDonald

• Added additional URL structure. To better mimic wordpress and other blogs URL I added a. /year/month/slug
url path - Josh

• Changing name of url pattern - Josh

• Added an image gallery app mezzanine.galleries - Stephen McDonald

• Give blog post with date urlpattern a unique name and correct regex - Stephen McDonald

• Added the setting BLOG_URLS_USE_DATE to control blog post url format - Stephen McDonald

114 Chapter 1. Table Of Contents

Mezzanine,

• Added my site which has taken the fairly popular pixel theme from Wordpress and partially created it from the
html5boilerplate. I’ll be working on rounding it out even further - joejulian

• Fixed Joe Julian’s site link - Stephen McDonald

• Device detection uses lowercase strings - Alvin Mites

• Added unique URLs for gallery photo overlays - Stephen McDonald

• Updated device checking based on conversation from Stephen McDonald - Alvin Mites

• Added a num_children attribute to page objects in page menus - Stephen McDonald

• Changed LICENSE from 3-clause to 2-clause BSD - Stephen McDonald

• Fixed unicode handling in gallery image description from name - Stephen McDonald

• Added gallery image tests - Stephen McDonald

• Added demo fixtures for galleries - Stephen McDonald

• Add Blog Featured Images. Added featured images for blogs as well as settings to turn the feature. on and off -
Josh

• Migration file for Featured image and setting the field to null - Josh

• Updated page_menu and tree.html to avoid creating uls if no pages in the page_branch are
in_navigation - Josh Cartmell

• Updated page_menu page_branch_in_navigation and page_branch_in_footer to
be more concise. Updated tree.html and footer_tree.html not print out uls unless
page_branch_in_navigation or page_branch_in_footer are set - Josh Cartmell

• Accidentally omitted if from tag - Josh Cartmell

• Updated footer.html to avoid unecessary uls - Josh Cartmell

• Rolling back as the previous change to footer.html did not work with 3rd level menus - Josh Cartmell

• Updated footer.html again to avoid unecessary uls - Josh Cartmell

• Updated footer.html identation to be more consistent - Josh Cartmell

• Refactored device handling to be based on TemplateResponse objects since dropping Django 1.1/1.2 support -
Stephen McDonald

• Requirements version bumps - Stephen McDonald

• Use filebrowser field for blog feature image, and add template handling for it - Stephen McDonald

• Removed all uses of ifequal and ifnotequal templatetags - Stephen McDonald

• Added model graph to docs - Stephen McDonald

• Temp remove requirements - Stephen McDonald

• Change Displayable.status default to published - Stephen McDonald

• Create dest directories in mezzanine.utils.tests.copy_test_to_media - Stephen McDonald

• Prevent child pages being added to protected pages. Closes #131 - Stephen McDonald

• Added SSLMiddleware which redirects based on matching url prefixes. Updated defaults.py with new set-
tings related to the middleware. Added deprecation warning if SHOP_SSL_ENABLED or SHOP_FORCE_HOST
is found in settings - Josh Cartmell

• Updated deprecation warnings to work - Josh Cartmell

1.17. Colophon 115

Mezzanine,

• Middleware now redirects back to non-secure if the request is secure but does not have a prefix from
SITE_FORCE_SSL_URL_PREFIXES - Josh Cartmell

• Added fix for footer.html if a page is primary, in footer and the first in the loop - Josh Cartmell

• Removed cartridge checks from SITE_FORCE_SSL_URL_PREFIXES defaults. Moving to cartridge and
using append - Josh Cartmell

• Restored mezzanine.core.AdminLoginInterfaceSelector and added a deprecation warning -
Stephen McDonald

• Added the setting TINYMCE_SETUP_JS which controls the URL for the TinyMCE setup JavaScript file -
Stephen McDonald

• Renamed SSL settings to begin with SSL and moved deprecation warnings to Cartridge - Stephen McDonald

• Moved account functionality from Cartridge into Mezzanine, and added data migrations for editable setting
name changes - Stephen McDonald

• Make generated fields in mezzanine.generic (_string, _count, _average, etc) uneditable, to pre-
vent them from appearing in admin change views that don’t have explicit admin classes registered - Stephen
McDonald

• Ensure generated fields in mezzanine.generic are unique instances - Stephen McDonald

• Fixed branch clicking in admin page tree so that open/close for a branch doesn’t toggle its children (Thanks
Jason Kowaleski) - Stephen McDonald

• Changed admin dropdown menu to be injected into breadcrumb area, rather than floating on it, to allow for the
breadcrumb background to wrap with menu items when the browser window is thin - Stephen McDonald

• Fixed admin page tree on reload. The problem occured when reloading a page after setting an open child
branch’s. parent as closed. When you reloaded a page the routine that would. reopen previously opened child
branches (that are currently hidden by a parent). was causing said child branch displaying both the show(+)
and hide(-). icons side by side which could be seen when reopening the parent. It would also cause this said
hidden, opened child branch. to no longer be registered in the opened branch cookie. So if you were to. reload
the page again, this branch wouldn’t be opened at all. The solution involves simply reopening all previously
opened branches on. reload without worrying about adding their ID’s again to the cookie. It also. avoids using
the Jquery toggle() function which seemed to be the problem. that caused both the show(+) and hide(-) buttons
to appear - Kowaleski, Jason

• Dummy commit - Stephen McDonald

• Refactored rating form and templatetag to remove hard-coded field name - Stephen McDonald

• Raise exception if any of the generic fields are used multiple times on the same model, since we don’t have
access to the field being modified in the signals - Stephen McDonald

• Added migrations for mezzanine.galleries - Stephen McDonald

• Fail silently and return an empty list for objects given without a KeywordsField - Stephen McDonald

• Refactored comment handling into its own view, and removed mezzanine.generic.utils.handle_comments
- Stephen McDonald

• Revert previous change for removing hard-coded rating field name, and remove the hard-coded field name by
simply finding the first RatingField for the given object, since there can only be one - Stephen McDonald

• Fix logic in form export - Stephen McDonald

• In mezzanine.forms, allow FormEntry instances to be provided for FormForForm and handle loading and
updating FieldEntry values - Stephen McDonald

• Update packages docs and re-generate settings docs - Stephen McDonald

116 Chapter 1. Table Of Contents

Mezzanine,

• Remove unnecessary time_format handling in SplitSelectDateTimeWidget which doesn’t exist in Django
1.4 - Stephen McDonald

• Add missing messages context processor for Django 1.4 - Stephen McDonald

• Allow docs to build even if model graph can’t be built - Stephen McDonald

• Allow BLOG_SLUG to be set to an empty string, in which case the catch-all urlpatterns belong to the blog, and
page urlpatterns get their own URL prefix - Stephen McDonald

• Use a generic sqlite db name in local_settings.py - Stephen McDonald

• Upgrade to Bootstrap 2.0 - Stephen McDonald

• Added Javascript to show only pages with children in tree, and to update this after moving pages (via drag and
drop) - Kowaleski, Jason

• Add fallback for blog title when blog page isn’t available - Stephen McDonald

• Fix gallery overlay close handler - Stephen McDonald

• Add the missing viewport for the responsive layout to work correctly - Stephen McDonald

• Updating doc for model customization, registering works better in admin.py - Ismail Dhorat

• More responsive footer - Stephen McDonald

• Change the template copying option in the mezzanine-project script to default to False - Stephen McDonald

• Create entries for empty fields, so that export filtering works correctly - Stephen McDonald

• Added travis config - Stephen McDonald

• Setup local_settings template when testing - Stephen McDonald

• Updated -t help text to reflect that it is no longer the default - Josh Cartmell

• Updated the mezzanine-project command to have a -m option which must be specified to copy over mobile
templates. The -t option now skips over mobile templates - Josh Cartmell

• Removed the make_grappelli/filebrowser_safe scripts as they’re no longer useful since we’ve cus-
tomized those packages - Stephen McDonald

• Remove themes from feature list - Stephen McDonald

• Restore requirements - Stephen McDonald

• Version bump to 1.0 - Stephen McDonald

Version 0.12.4 (Dec 03, 2011)

• Synchronize PO files with tip - Sebastián Ramírez Magrí

• Synchronize PO files - Sebastián Ramírez Magrí

• Added a note to the documentation overview about assumed Django knowledge with a reference to the tutorial
- Stephen McDonald

• Let messages fail silently for Django < 1.3 - stephenmcd

• Don’t rely on version checking for adding cookie-based messaging - stephenmcd

1.17. Colophon 117

Mezzanine,

Version 0.12.3 (Nov 23, 2011)

• Fixed Disqus single-sign-on bug where message is overwritten to <message, timestamp> and returned incor-
rectly in payload - Brett Clouser

• Changed thumbnail test to remove test thumbnail even if test fails - Stephen McDonald

Version 0.12.2 (Nov 19, 2011)

• Added the mezzanine.utils.html.TagCloser class that closes open tags in a string of HTML. Used
in Displayable.description_from_content to ensure valid HTML is returned when extracting the
first block/sentence. Fixes #100 - stephenmcd

Version 0.12.1 (Nov 19, 2011)

• possibility to insert fieldsets’ fields in classes extended from DisplayableAdmin (was not possible, tuples are
immutable) - Zdeněk Softič

• Added handling in BaseGenericRelation for actual instance being deleted. Fixes #103 - stephenmcd

• Added testing for correct keyword string population on keyword removal - stephenmcd

Version 0.12 (Nov 05, 2011)

• added allow_comments flag to blog, and moved the site filed up the class hierarchy from Displayable to
Slugged, plus migrations - legutierr

• KeywordManager needs to subclass CurrentSiteManager in order to take advantage of multi-site capability
added to Slugged - legutierr

• This is probably the most complex migration I have written. Read inline comments for more information -
legutierr

• Fixed unicode handling in CSV export in the forms app - stephenmcd

• Fixed Django 1.3/1.4 feed handling - stephenmcd

• Added fallbacks for blog feed title and description for when the blog page doesn’t exist - stephenmcd

• Added response tests for the blog feeds - stephenmcd

• Added handling for spaces in keywords - stephenmcd

• Fixed meta keywords loading in blog post templates - stephenmcd

• Upgraded keyword handling in mobile templates - stephenmcd

• Changed keywords_for template tag to handle None being given as an instance - stephenmcd

• Added support for using generic relations as order_with_respect_to on subclasses of Orderable, and
applied to AssignedKeyword so that keyword order is maintained - stephenmcd

• Fixed check for generic relations in Orderable - stephenmcd

• Stringify secret_key because hmac hates unicode - Ken Bolton

• Fix issue #97. Add PNG support - Ken Bolton

• Remove logger code - Ken Bolton

118 Chapter 1. Table Of Contents

Mezzanine,

• Renamed export related areas to entries in the forms app and added handling for deleting form entries - stephen-
mcd

• Added mezzanine.utils.messages module with fallbacks for the django.contrib.messages
app - stephenmcd

• Added a count for the number of entries displayed in the admin for the forms app - stephenmcd

• Use css selectors rather than JS for injecting the count in the admin entries view for the forms app - stephenmcd

• Added a comment to the urlconf in project_template describing the importance of ordering in relation to
mezzanine.pages urlpatterns when adding your own - stephenmcd

• Added the mezzanine.boot app which exists for handling setup code, and added the
EXTRA_MODEL_FIELDS setting which is used by boot to inject extra fields onto any models required
via the class_prepared signal - stephenmcd

• Use the DEV_SERVER setting when setting up Grappelli media hosting - stephenmcd

• Updated the EXTRA_MODEL_FIELDS example in settings.py - stephenmcd

• Added EXTRA_MODEL_FIELDS to mezzanine.conf.defaults - stephenmcd

• Added initial docs for model field customization - stephenmcd

• Restructured the docs into more logical paragraphs and added some missing modules to the packages docs -
stephenmcd

• Allow for non-keyword args for fields in EXTRA_MODEL_FIELDS - stephenmcd

• Initial attempt at a subclassable MixinModel for injecting fields and methods into external models - stephenmcd

• Add png & gif thumbnailing. Support for filebrowser FileBrowseField thumbnailing - Ken Bolton

• Somehow, this didn’t make it up to my repo - Ken Bolton

• if setting in registry is no more registered, delete it from registry - btx

• Cleaned up mezzanine.utils.conf.set_dynamic_settings - stephenmcd

• Added sections to the model customizations docs about field injection caveats and exposing custom fields in the
admin - stephenmcd

• Updated grappelli version requirement - stephenmcd

Version 0.11.10 (Sep 24, 2011)

• Upgraded pyflakes test to handle latest version of pyflakes - stephenmcd

• better fix by Stephen for dynamic inline fields focus issue - Eli Spizzichino

• Changed install command to only fake migrations when South is installed - stephenmcd

• Renamed install command to createdb and added deprecation warning for install - stephenmcd

Version 0.11.9 (Sep 22, 2011)

• Added defaults for cookie messaging with Django >= 1.3 - stephenmcd

• Moved description and keywords fields out of Displayable and into their own MetaData abstract model - stephen-
mcd

• Added handling for changes to the syndication app in Django 1.4 - stephenmcd

• Added feed imports to suppressed pyflakes warnings - stephenmcd

1.17. Colophon 119

Mezzanine,

• Removed fixtures from tests - stephenmcd

• Fixed device template test - stephenmcd

• Enable iframe, xhtmlxtras in tinymce - Ken Bolton

• Bumped grappelli-safe version requirement - stephenmcd

Version 0.11.8 (Aug 24, 2011)

• Fixed incorrect setting name in device handling docs - stephenmcd

• Use Django’s simplejson - stephenmcd

Version 0.11.7 (Aug 19, 2011)

• Upgraded DISQUS handling in the blog templates to properly use the generic app, as well as fixing DISQUS
identifiers to be unique across different models - stephenmcd

Version 0.11.6 (Aug 13, 2011)

• Decorate blog posts in blog_post_list with lists of categories and keywords - stephenmcd

• Added a has_childen helper to page objects in the page menus - stephenmcd

• Fixed styling of fixed footer in admin change form when Grappelli is not used - stephenmcd

• Fixed migration of object_pk in Rating and AssignedKeyword - David Prusaczyk

• Added null defaults for generic migration fix - stephenmcd

• Created an install management command that combines syncdb and migrate –fake to correct the issue of ini-
tial migrations failing with multiple apps. As a result reverted USE_SOUTH default to True and removed the
handling of south for fixture loading - stephenmcd

• Fixed a bug in orderable inlines where order fields would be wiped on inlines that only contain a file upload
field - stephenmcd

• Fixed quick-blog form styling to be fluid - stephenmcd

• Fixed bug with url field hiding logic - stephenmcd

• Added a custom slugify function to mezzanine.utils.urls that preserves unicode chars to support non-
English URLs - stephenmcd

• Updated jquery-ui version. Fixes #80 - stephenmcd

• Add placeholders for dynamic inline sorting - stephenmcd

• Fixed category decorator query in blog post list when there are no blog posts - stephenmcd

• merging pending changes to mezzanine trunk - legutierr

• Migration adding site field to dynamic settings needs to be split into separate schema and data migrations -
legutierr

• Fixed slug calculation for pages so that actual parent slugs are used. Fixes #82 - stephenmcd

• fixed unicode encode error with cyrillic slugs in template loader - Andrew Grigrev

• switch to turn comments on blog posts on/off - Johnny Brown

• fixed unicode encode error with cyrillic slugs in template loader in other places - Andrew Grigrev

120 Chapter 1. Table Of Contents

Mezzanine,

• changed google analytics js to what they gave me - Johnny Brown

• selectively load analytics - Johnny Brown

• Added ARA Consultants to site using Mezzanine - stephenmcd

Version 0.11.5 (Jul 04, 2011)

• Changed device test to use a page it creates itself - stephenmcd

• Updated old contentpage template in the mobile theme to richtextpage - stephenmcd

Version 0.11.4 (Jul 03, 2011)

• fixes 500 error on mobile theme (bad template tag) - Owen Nelson

• Updated processor_for as exceptions received were TypeError get_model() takes at least 3 arguments
(2 given) not a ValueError - Josh Cartmell

• Fixed some new pyflakes warnings - stephenmcd

• Only run thumbnail test when the test image is in the current project (eg Mezzanine dev) - stephenmcd

• Fixed tinyMCE setup to allow tables - Zeke Harris

• Fix allowing inline editing of form content on form pages by avoiding naming conflicts with the inline editing
form - Josh Cartmell

• Update example settings. Fixes #70 - stephenmcd

• Don’t use HTML5 required attributes on multiple checkboxes - stephenmcd

• Adding site FK to mezzanine.conf.models.Setting and read/write hooks to present content based on
current_site - Ken Bolton

• Allow override of GRAPPELLI_ADMIN_HEADLINE and _TITLE in settings.py - Ken Bolton

• Proper setting of default values for GRAPPELLI_ADMIN_HEADLINE and _TITLE, to fix #74 - Ken Bolton

• Proper setting of default values for GRAPPELLI_ADMIN_HEADLINE and _TITLE - Ken Bolton

• Update the site for existing settings when migrating - stephenmcd

• added post_count to blog_categories tag - Michael Delaney

• Added select_related for blog list view - stephenmcd

Version 0.11.3 (Jun 09, 2011)

• catches exception generated when trying to retrieve the admin url for a model that is not registered, to allow
some Page models not to be registered in the admin - legutierr

• migration 0004 conflated a schema migration and a data migration, which was causing problems with MySQL.
The two are now separated - legutierr

• pass all form media to the template - Owen Nelson

• implementing richtext_filter - Owen Nelson

• adding docs for RICHTEXT_FILTER setting - Owen Nelson

• updated docs on how to customize RICHTEXT_FILTER - Owen Nelson

1.17. Colophon 121

Mezzanine,

Version 0.11.2 (Jun 01, 2011)

• compile language files, compiled blog, mobile, twitter language files - Alexey Makarenya

• Updated 960.gs to fluid version - stephenmcd

• Remove mezzanine from internal Mezzanine urls - stephenmcd

• Test to verify if thumbnail generation is working - Brent Hoover

• Added 500 handler view that adds MEDIA_URL to the context - stephenmcd

• Fixed unicode handling in KeywordsWidget rendering - stephenmcd

• Added pip requirments to project_template and use it to define Mezzanine’s actual version number -
stephenmcd

• Fixed thumbnail test - stephenmcd

• Reverted change to storing version number to work with docs generation - stephenmcd

Version 0.11.1 (May 24, 2011)

• Upgraded comment handling to work with new comment models in base blog importer. Fixes #59 - stephenmcd

• Only look for tags if it isn’t going to throw an AtributeError - rich

• Only look for tags if it isn’t going to throw an AttributeError - rich

• Split mezzanine.core.admin.DynamicInlineAdmin out into TabularDynamicInlineAdmin
and StackedDynamicInlineAdmin - stephenmcd

• Fixed missing media from dynamic admin form - stephenmcd

• Added the template filter is_installed which can be used to test for values in the INSTALLED_APPS
setting from within templates - stephenmcd

• Added is_installed for blog app around feed urls in mobile base template - stephenmcd

• Added integration with django’s sitemaps app - stephenmcd

• Added handling in KeywordsWidget for the keywords field not existing in the request. Fixes #64 - stephenmcd

• Fixed issue where admin.StackedInlines would not display in the admin - Josh Cartmell

• Cleaned up white-space - stephenmcd

• Updated tinymce_setup.js to only initialize when TinyMCE is available - stephenmcd

• Updated dynamic_inline.js to support StackedDynamicInlineAdmin - stephenmcd

• Reordered jQuery in base_site.html to avoid issues when Grappelli isn’t installed - stephenmcd

• Added CSS classes to each of the comment fields - stephenmcd

• Addd better hanadling in the keyword widget for when no keyword field is in the request. Previous fix only
corrected the field not existing in the form object - stephenmcd

• Fixed the version check for collapse_backport.js - stephenmcd

• Added Single-Sign-On support to Disqus templates - Brett Clouser

• Added handling for unauthenticated users and empty key settings for Disqus single sign-on - stephenmcd

• Updated auto-generated settings docs - stephenmcd

• Added some sys.path fixing in manage.py to avoid some cron issues - stephenmcd

122 Chapter 1. Table Of Contents

Mezzanine,

• Changed object_pk fields to integer fields in the generic app to resolve some issues with Postgres - stephen-
mcd

• Added migrations for object_pk change in generic. Fixes #66 - stephenmcd

• Fixed loading of blog posts for a tag - stephenmcd

Version 0.11 (Apr 30, 2011)

• Created a GRAPPELLI_INSTALLED setting that is dynamically set, and made it available to JavaScript in the
admin so that this can be determined reliably without depending on Grappelli specific HTML/CSS - stephenmcd

• Made the default value for the DASHBOARD_TAGS setting dynamically created based on whether
mezzanine.blog is in settings.INSTALLED_APPS - stephenmcd

• Added commented-out versions of some common Mezzanine settings to the project_template’s settings
module - stephenmcd

• French locale for all other apps - Dominique Guardiola

• Updated inline-editing docs to include a note about the tags already being provided by themes - stephenmcd

• Added setting for specifying the delimiter for CSV exports in the forms app - stephenmcd

• Added an option to view entries in a HTML table when exporting for the forms app - stephenmcd

• Fixed Page.get_absolute_url to use its static slug rather than dynamic get_slug. Fixes #45 - stephen-
mcd

• Making Query.value a varchar(300) to allow for larger queries - John Campbell

• make value length 140 instead of 300 since the max twitter query is 140 currently - John Campbell

• Added migration for twitter query length - stephenmcd

• Converted blog categories to a ManyToManyField - stephenmcd

• Added migration scripts for blog categories - stephenmcd

• not sure how there wasn’t one of these already - Tom von Schwerdtner

• Added post counts to archive and author listings for blog posts - stephenmcd

• add a label to registered settings for a more human-friendly admin UI - Tom von Schwerdtner

• A meta title for the default project homepage - Tom von Schwerdtner

• add title/tagline to admin settings - Tom von Schwerdtner

• a (slightly) better default tagline, and make settings available to templates - Tom von Schwerdtner

• Move the LOGIN_URL default into the project’s settings module so it can be modified - stephenmcd

• Modified the AdminLoginInterfaceSelector middleware to recognise next paramters in the querys-
tring, and redirect to those regardless of the interface option selected on the login form - stephenmcd

• Applied SITE_TITLE and SITE_TAGLINE to templates - stephenmcd

• Made description field for meta data into plain text - stephenmcd

• Added descriptions for new settings - stephenmcd

• Added styling for the blog tagline - stephenmcd

• Updated the auto-generated settings docs - stephenmcd

• Implemented initial version of custom per-page permissions - stephenmcd

1.17. Colophon 123

Mezzanine,

• Added some template code to the gallery example in docs - stephenmcd

• Changed TinyMCE setup to properly support embed code - stephenmcd

• Integrated the SITE_TITLE and SITE_TAGLINE settings better into templates - stephenmcd

• Removed handling of HTML from Displayable.description - stephenmcd

• Updated the settings docs with the restored defaults for the SITE_TITLE and SITE_TAGLINE settings -
stephenmcd

• Added a section to the admin customization docs about defining custom widget classes for HtmlField fields -
stephenmcd

• Changed mezzanine-project script to exclude admin templates - stephenmcd

• Added note to deployment docs about setting up a cron job for Twitter feeds - stephenmcd

• Added embedded robots.txt to prevent spidering when DEBUG is enabled - stephenmcd

• Fixed handling of anonymous comments in the Disqus API - stephenmcd

• Changed handling of editable settings to force unicode for settings with string defaults. Fixes #52 - stephenmcd

• Initial version of refactoring comments into Django’s built-in comments, and moving them into the new generic
package - stephenmcd

• Added multi-site capability and tests, updated jso page fixtures to include site reference - legutierr

• added migrations for the new site field on Displayable - legutierr

• Fixed bug in login redirect - was defaulting to /accounts/profile/ upon login before and showing the logged in
user a 404 error. Now defaults to /admin/ - Audrey M Roy

• Added migrate command to setup steps. Closes #54 - stephenmcd

• Fixed incorrect tag lib name in template - stephenmcd

• Added documentation regarding multi-site to the deployment page in the docs - legutierr

• Fixed mezzanine-project script where an error would occur when more than one project template with admin
templates was used - stephenmcd

• Refactored the Keywords model to use generic relations and moved it and all related functionality into
mezzanine.generic - stephenmcd

• Fixed a bug where django.conf.settings would override mezzanine.conf.settings - stephen-
mcd

• Added tests for keywords - stephenmcd

• Added migrations for keywords - stephenmcd

• Updated mezzanine/core/media/js/dynamic_inline.js to allow multiple DynamicInlineAdmins
on a single admin page - Josh Cartmell

• Fixed a potential circular import bug - stephenmcd

• Added more error handling to the processor_for page processor decorator - stephenmcd

• Added delete links to the admin page tree - stephenmcd

• Updated search to respect published status - Josh Cartmell

• Small fix to Keywords Field. Stops instance from saving if keyword data is empty - Osiloke Emoekpere

• Removed DEV_SERVER setting from local_settings module template, since this is defined dynamically
- stephenmcd

124 Chapter 1. Table Of Contents

Mezzanine,

• Removed south from the OPTIONAL_APPS setting, since the addition of this to a project needs to be con-
trolled manually, as the order of initial migrations for each app cannot be guarenteed and will break if used to
create the tables for these apps. Added the USE_SOUTH boolean setting which can be defined to automatically
have south added to INSTALLED_APPS when available. Fixes #53 - stephenmcd

• Updated package docs - stephenmcd

• Removed handling of admin user for returning unpublished search results - stephenmcd

• Added test to ensure only published objects are returned as search results - stephenmcd

• Fixed bug where superclasses in concrete model inheritence chains would cause duplicate search results -
stephenmcd

• Fixed bug where _order values were not being set for dynamic inlines - stephenmcd

• Added extra_context arg to mezzanine.pages.views.page - stephenmcd

• Refactored the page processor to only accept one argument since its behaviour is to only deal with one - stephen-
mcd

• Added note to docs about slug-based page processors - stephenmcd

• Cleaned up white-space - stephenmcd

• Removed migrate command from installation notes since south is no longer automatically configured - stephen-
mcd

• Re-sequenced the migrations for the Displayable.site field - stephenmcd

• Applied workaround for unexplainable Django issue where certain signals get lost - stephenmcd

• Removed unused code - stephenmcd

• Updated settings form template to have a submit row and error note consistent with other admin change forms -
stephenmcd

• Added ratings to mezzanine.generic and applied to the blog app - stephenmcd

• Updated auto-generated settings docs - stephenmcd

• Added handling for page menus where parent page is explicitly provided. Fixes #58 - stephenmcd

• Renamed Content to RichText, ContentPage to RichTextPage, and HtmlField to
RichTextField - stephenmcd

• Fixed handling of USE_SOUTH setting so that south is also removed when explicitly set to False - stephenmcd

• Updated template for RichTextPage - stephenmcd

• Fixed toolbar styling for TinyMce inside the inline editing form - stephenmcd

Version 0.10.6 (Feb 14, 2011)

• blog strings from html templates - Dominique Guardiola

• Apply the CSRF token to all AJAX posts in the admin - stephenmcd

Version 0.10.5 (Feb 11, 2011)

• Updated mezzanine.utils.importing name in package docs - stephenmcd

• Changed cache handling to remove middleware classes if no cache backend specified - stephenmcd

1.17. Colophon 125

Mezzanine,

• Refactored adding of optional apps so that it only occurs once, and the ordering of installed apps so that order
is not modified unless necessary (eg grappelli) - stephenmcd

• Moved generation of docs/settings.rst and CHANGELOG from docs/conf.py into functions in
mezzanine.utils.docs - stephenmcd

• Fixed admin fieldsets example in docs - stephenmcd

• Removed includes from mobile theme that replicated JavaScript common to all devices - stephenmcd

• Fixed JavaScript for Discus comments - include the absolute URL - stephenmcd

• Fixed module margin in admin dashboard - stephenmcd

• Changed Google Anylatics code so that the main tracking args can be overridden via a block - stephenmcd

• Reverted Google Analytics block in favour of checking for an existing _gaq JavaScript var - stephenmcd

• fix for ajax in admin not using csrf token for forms. fix for django 1.2.5 - lexual

Version 0.10.4 (Jan 29, 2011)

• Fixed regression in cache defaults. Django defaults to a 5 minute memory cache which functions with Mezza-
nine’s caching middleware installed by default. We now set the cache backend to dummy if no cache backend
is defined in the project’s settings module - stephenmcd

Version 0.10.3 (Jan 28, 2011)

• Renamed the module mezzanine.utils.path to the more accurate mezzanine.utils.importing
- stephenmcd

• Added the function mezzanine.utils.importing.import_dotted_path for importing via Python
paths to names which are defined as string settings - stephenmcd

• Removed the cache defaults - stephenmcd

• Removed redundant import - stephenmcd

Version 0.10.2 (Jan 27, 2011)

• Updated docs to describe approach for adding fieldsets to subclasses of PageAdmin - stephenmcd

• Added a depth arg for select_related in the recent comments panel of the admin dashboard - stephenmcd

• Restored depth arg for select_related in blog manager - stephenmcd

• Added deployment section to docs describing the various aliases required for serving media files, and added a
management command which prints these out - stephenmcd

• Grammar fix in docs - stephenmcd

• Added lost password link to login template - stephenmcd

• Fixed the handling for creating the default user when south is installed. Closes #34 - stephenmcd

Version 0.10.1 (Jan 13, 2011)

• Fixed bug in PageAdmin._maintain_parentwhere it was assumed a location header exists for a redirect,
which isn’t actually the case when the page is being edited via a popup window as a forgien key - stephenmcd

126 Chapter 1. Table Of Contents

Mezzanine,

Version 0.10 (Dec 22, 2010)

• Renamed fixtures to not be installed with syncdb and added signal to install them when pages are first installed
- stephenmcd

• Renamed example mobile template so that it won’t be rendered by default - stephenmcd

• Updated device template test to only run when device templates exist - stephenmcd

• Added a setting for restricting setting available in templates - stephenmcd

• Fixed some CSS around inline editing - stephenmcd

• Added hook for third-party apps to extend existing settings - stephenmcd

• Fixed settings append hook - stephenmcd

• Backported inline editing helptext markup for Django <= 1.2 - stephenmcd

• Fixed settings append hook again - stephenmcd

• Added handling for variable template names in include tags - stephenmcd

• Cleaned up a ton of unused imports. Fixes #29 - stephenmcd

• Updated local_settings template - stephenmcd

• Added initial south migrations for all apps - stephenmcd

• Added initial optional support for HTML5 with placeholder attributes in the forms app - stephenmcd

• Added support for HTML5 required attributes in the forms app - stephenmcd

• Refactored values for field types in the forms app to separate out classes and widgets - stephenmcd

• Added HTML5 field types to the forms app: date, datetime, email - stephenmcd

• Rename user variable to author in mezzanine.blog.views.blog_post_list to avoid clobbering
Django’s user context variable. Fixes #30 - stephenmcd

• Update to new author var in blog listing template - stephenmcd

• Reduced the width of text fields for field inlines in the form admin - stephenmcd

• Updated the layout for auto generated packages docs as well as adding new missing modules. Made a giant
sweep of the code base adding and updating docstrings that appear in the packages docs - stephenmcd

• Removed unused admin template filter is_page_content_model - stephenmcd

• Fixed south compatibility with fixture loading - stephenmcd

• make save/delete buttons in admin, always visible at screen’s bottom edge - lexual

• Added pyflakes test - stephenmcd

• Fixed pyflakes test - stephenmcd

• Removed unused imports - stephenmcd

• Added a CSS shadow to the inline editing form - stephenmcd

• Fixed missing hidden fields in the inline editing form - stephenmcd

• Added a split datetime widget with select fields for date parts in the inline editing form - stephenmcd

• Refactored mezzanine.utils module into a package - stephenmcd

• Moved pyflakes test runner into utils - stephenmcd

• Updated package docs layout with new utils package - stephenmcd

1.17. Colophon 127

Mezzanine,

• make static save buttons in admin, not affect admin login page - lexual

• Fixed path for serving of theme assets - stephenmcd

• Moved handling of serving assets during development from project’s urlconf into mezzanine.urls -
stephenmcd

• Removed favicon handling during development - stephenmcd

• Refactored urls so that mezzanine.urls becomes the main point for combining urls for all the different
apps. Also moved homepage url into the project’s urlconf as it’s expected to be modified - stephenmcd

• Removed use of Django’s LOGIN_FORM_KEY from Mezzanine’s AdminLoginInterfaceSelector
middleware since it was just removed from Django trunk and now breaks. Fixes #31 - stephenmcd

• Added a background gradient to pages in the admin page tree - stephenmcd

• Moved admin submit-row buttons CSS into base admin template - stephenmcd

• Fixed serving of media files outside of a theme when a theme is defined as in development - stephenmcd

• Added support in the admin page tree for changing parents via dragging between branches - stephenmcd

• Fixed failures in Django’s tests caused by automatically using a cache backend when available - stephenmcd

• Added handling for regenerating slugs when a page’s parent changes - stephenmcd

• Fixed bug where editable settings were being loaded from the DB on every access - stephenmcd

• Updated each of Mezzanine’s apps to use its version number as their own - stephenmcd

• Restored empty string as default TIME_ZONE value so Django uses the system timezone - stephenmcd

• Moved the Grappelli/Filebrowser/caching setup into mezzanine.utils.conf - stephenmcd

• Made editable template tag fail silently if None is given - stephenmcd

• Fixed overridden slugs changing on pages when their parent changes - stephenmcd

• Changed Page.overridden to be more reliable by not using get_absolute_url which can be incorrect
without a permalink - stephenmcd

• tinymce: remove word styling when cutting and pasting. Remove unnecessary toolbar buttons - lexual

• remove more MS word paste junk from tinymce pasting - lexual

• Updated handling of post_syncdb signal to still execute when south is installed - stephenmcd

• Fixed unicode bug when non-ascii strings are used in the blog comment form and break when persisted to a
cookie - stephenmcd

• Refactored out the widget for the HtmlField into its own widget that can then be replaced via the setting
HTML_WIDGET_CLASS - stephenmcd

• Fixed bug in post_syncdb signal handler names - stephenmcd

• Added new hooks for page menus for determining whether a page is a child or sibling of the current page -
jdeblank

• Added initial version of a mobile menu that only renders child page links - jdeblank

• Removed redundant setuptools requirement - stephenmcd

• Cleaned up unused imports - stephenmcd

• Fixed default settings ordering - stephenmcd

• Updated auto-generated settings docs - stephenmcd

128 Chapter 1. Table Of Contents

Mezzanine,

• Fixed a pathing bug in creating themes on Windows - stephenmcd

• Added HTML5 form features to inline edit forms - stephenmcd

• Added a context-aware version of Django’s inclusion_tag template tag - stephenmcd

• Moved assignment of menu helper page attributes into Page.set_menu_helpers and renamed some of
them to be clearer in purpose - stephenmcd

• Refactored menu template tags into a single tag page_menu which accepts the name of the menu template to
use - stephenmcd

• Added initial handling for overriding device in a cookie - stephenmcd

• Changed mezzanine.core.models.Displayble.set_searchable_keywords to only trigger a
save when the keyword list changes - stephenmcd

• Moved the call to mezzanine.core.models.Displayble.set_searchable_keywords inside
mezzanine.core.admin.DisplayableAdmin from save_form to save_model so that it is only
triggered when the entire form including inline formsets are valid - stephenmcd

• Changed mezzanine.utils.conf.set_dynamic_settings to ensure
debug_toolbar.middleware.DebugToolbarMiddleware is only ever added once when in-
stalled - stephenmcd

• Added a set_cookie function to save repeating seconds conversion and encoding - stephenmcd

• Changed the check for a device in cookies to only match if the value is a valid device - stephenmcd

• Added a set_device view for explictly requesting the site for a particular device via cookie - stephenmcd

• Mobile theme - jdeblank

• Moved mobile templates to mobile theme directory - stephenmcd

• Moved determining device from request into mezzanine.utils.device_from_request - stephenmcd

• Created a device aware version of Django’s cache middleware that uses the device for the request as part of the
cache key - stephenmcd

• Updated device section in docs to include a section about the mezzanine.mobile theme - stephenmcd

• Updated text for link to mobile site - stephenmcd

Version 0.9.1 (Nov 29, 2010)

• stop creation of empty p id=”description” (Potentially needs refactoring) aka not too elegant - Lee Matos

• Fixed white-space in blog list template - stephenmcd

• Fixed branching of admin media hosting for Grappelli - stephenmcd

Version 0.9 (Nov 28, 2010)

• Change the logic around settings loading to avoid some untrappable errors creating the DB table - stephenmcd

• Update setting names in docs - stephenmcd

• Update conf app name in packages docs - stephenmcd

• Remove redundant import - stephenmcd

• Update to multiple DB settings - stephenmcd

1.17. Colophon 129

Mezzanine,

• update to jquery 1.4.4 http://blog.jquery.com/2010/11/11/jquery-1-4-4-release-notes/
- lexual

• Fixed the blog_categories template tag so that it returns a list of categories without duplicates - Brad
Montgomery

• Added a "get_recent_posts" template tag - Brad Montgomery

• Update template loader and auth context processor names to newest versions with fallbacks for Django 1.1 -
stephenmcd

• Add south introspection rules for mezzanine.core.fields.HtmlField - stephenmcd

• allow definition lists in tinymce - lexual

• Modification of the importer script to be more streamlined. Moved importer to the blog module main and still
to refactor the changes to the command line module. Can be run from a django shell and import blogger and
word press - ajfisher

• Initial layout for themes - stephenmcd

• finished refactoring of importers module and wrote new import blog handler to import the various blog types
into mezzanine. Also stripped down the params to be passed in on the word press blog - now treating any path
as a url and dealing with it system side rather than user side - ajfisher

• Added documentation around blogger import stuff - ajfisher

• Remove some old redundant template tag loading - stephenmcd

• Add admin change logging to inline editing - stephenmcd

• Allow newer versions of Django to determine full paths for templates in the start_theme command -
stephenmcd

• if image is already the right size, don’t change it (fixes bug where image quality is degraded if same size.) -
lexual

• Add copying of media files to start_theme command - stephenmcd

• Initial support for hosting a theme - stephenmcd

• Fix check for exact image size in thumbnail template tag - stephenmcd

• Make use of conf module’s name within itself dynamic - stephenmcd

• Create a path_for_import utils function for calculating package/module paths - stephenmcd

• Add media hosting for a theme when defined - stephenmcd

• Further refactoring of the import process using a BaseImporterClass which is a Command and then setting up
specific implementations for Wordpress and Blogger - ajfisher

• Modification to the docs in order to update the new structure of the commands and also how to implement a new
importer class - ajfisher

• removed all the now-superfluous files - ajfisher

• Wrap lines in blog import docs - stephenmcd

• Modifications to make the class abstraction more tidy and clean up some other bits and pieces of code as well -
ajfisher

• First round of edits for the blog import docs - stephenmcd

• Fix up constructor logic - stephenmcd

• Fix mezzanune_user reference in base blog importer - stephenmcd

130 Chapter 1. Table Of Contents

Mezzanine,

• Move the output messages for blog importing into the base importer class - stephenmcd

• Fix settings access for THEME in urls.py - stephenmcd

• Fix duplicate months in archive list for blog - stephenmcd

• Initial version of install_theme command - stephenmcd

• Add handling for interactive option in install_theme command - stephenmcd

• Rename scripts directory to bin for consistency with Django - stephenmcd

• Rename Blog importer convert method to handle_import and pass it options directly to mimic Django
commands more closely - stephenmcd

• Clean up unused exceptions in Blog importer - stephenmcd

• Add a old_url arg for posts in base Blog importer for creating redirects - stephenmcd

• Upgrade import_tumblr command to use new importer base - stephenmcd

• Add handling in the import_tumblr command for more posts that a single call to Tumblr’s API allows -
stephenmcd

• Add handling for verbosity option in base Blog importer - stephenmcd

• Add handling for all post types in the import_tumblr command - stephenmcd

• Fix some errors and add Tumblr info to the blog importing doc - stephenmcd

• Move Google Analytics and editable_loader tag into their own include template
footer_scripts.html - stephenmcd

• Add docs for themes - stephenmcd

• Rename recent_posts blog template tag to be consistent with other tags - stephenmcd

• Add recent blog posts to filter_panel.html - stephenmcd

• js fix for ie bug with formbuilder - lexual

• Missing apostrophe - stephenmcd

• Modified the blog’s filter_panel tempate so tags get closed properly - Brad Montgomery

• locale spanish - Carlos David Marrero

• search_results.html locale spanish - Carlos David Marrero

• More robust handling for class-based views in mobile middleware. Closes #23 - stephenmcd

• add primary menu id to the UL for semantic and/or styling uses - Lee Matos

• Moved mezzanine.templates into a package - stephenmcd

• Add context-aware replacements for Django’s render_to_response, select_template,
get_template and template tags include and extend - stephenmcd

• Changed calls to select_template and render_to_response to use Mezzanine’s context-aware ver-
sions - stephenmcd

• Deprecated mezzanine.core.middleware.MobileTemplate - stephenmcd

• Added main handling for device specific template directories - stephenmcd

• Added a context-aware replacement for Django’s direct_to_template - stephenmcd

• Moved the test mobile homepage into its device specific subdirectory - stephenmcd

• Fixed renaming of node class in extends tag - stephenmcd

1.17. Colophon 131

Mezzanine,

• Replaced mobile middleware test with device specific template test - stephenmcd

• Added “blog-post-tile” class for semantic/styling purposes - Lee Matos

• Added documentation for device specific template loading - stephenmcd

Version 0.8.5 (Nov 10, 2010)

• CSS update for default templates - stephenmcd

• Add more fine-grained error handling for tumblr_import management command - stephenmcd

• Change TinyMCE options to relax allowed HTML - stephenmcd

• More TinyMCE allowances - stephenmcd

• CSS updates to inline editing form - stephenmcd

• Initial version of admin dashboard plugin system with Quick Blog and Recent Comments implemented as
dashboard widgets - stephenmcd

• Convert remaining dashboard sections into dashboard tags - app list and recent actions - stephenmcd

• Add the new screenshot - stephenmcd

• Add docstring to inline editing view - stephenmcd

• Add basic support for class-based views in mobile middleware and a more explicit check for unique mobile
template names - stephenmcd

• Backed out changeset: c2ed0a189648 - stephenmcd

• Re-apply TINYMCE_URL setting, lost from merge - stephenmcd

• Move settings for forms app into main settings module - stephenmcd

• Fix filebrowser_safe generator script to add a dummy Image module which will prevent breaking when
PIL isn’t installed. Closes #15 - stephenmcd

• Give the ContentPage model a more descriptive name for the content type dropdown menu in the admin
page tree - stephenmcd

• Convert mezzanine.settings into an app with values lazy loaded via DB - stephenmcd

• Add a default user when syncdb is called - stephenmcd

• Rewrite settings app to give more control over when settings are loaded so that fewer DB queries are used -
stephenmcd

• Prevent settings from being loaded from DB during syncdb - stephenmcd

• Change settings from dicts into objects so they can be more easily identified when iterating through the
mezzanine.settings.defaults module - stephenmcd

• Add admin view and form for editing all settings - stephenmcd

• Fix post_syncdb signal for demo user to work with Django 1.1 - stephenmcd

• Fix casting of boolean settings from DB - stephenmcd

• Add a redirect on successful update of settings - stephenmcd

• Add tests for settings app - stephenmcd

• Fix custom field HTML for Django 1.1 - stephenmcd

• Add hook for apps to register their own settings - stephenmcd

132 Chapter 1. Table Of Contents

Mezzanine,

• Refactor settings app - stephenmcd

• Update docs to use new settings app - stephenmcd

• Fix export for forms with deleted fields in forms app - stephenmcd

• Allow comma separated list of field choices to contain commas when quoted in forms app - stephenmcd

• Add a back button to the admin export view in the forms app - stephenmcd

• Fix bad copy - stephenmcd

• Fix missing import in forms export - stephenmcd

• Allow multiple fields to be used in a single editable tag - stephenmcd

• Update docs with information about grouping together fields for inline editing - stephenmcd

• Update creation of default user to only run with --noinput passed to syncdb - stephenmcd

• tree_menu_footer tag added. Exact same as "tree_menu" but checks if in footer not if in nav - lexual

• Hide the slug field and delete button in the admin for pages with an overridden urlpattern - stephenmcd

• Display list bullets and numbers in content - Eric Floehr

• Fix rendering editable fields when not authenticated - stephenmcd

• Update mezzanine-project script to remove pyc files when creating new projects - stephenmcd

• Remove admin menu from popups - stephenmcd

• Add mezzanine.core.templatetags.mezzanine_tags.thumbnail for image resizing -
stephenmcd

• Add docs for the mezzanine.settings app - stephenmcd

• Strip newlines from commit messages in the auto-generated CHANGELOG - stephenmcd

• use export instead of checkout - Tom von Schwerdtner

• Use svn export in grappelli/filebrowser scripts. Closes #16 - stephenmcd

• Fix split on commit author in automated CHANGELOG generator - stephenmcd

• removing tweet_timesince filter - Eric Floehr

• Fix unrequested settings being loaded from DB - stephenmcd

• Allow no names to be provided when calling editable_settings - stephenmcd

• Sort setting names for settings form in admin - stephenmcd

• Add Django as a dependency and remove import from project_template.settings in setup.py
which depends on Django - stephenmcd

• Remove redundant call to jQuery.noConflict since editable_loader is now at end of the document.
Also check for an existing jQuery instance before including it - stephenmcd

• Fix isDirty() check for file fields in dynamic inlines - stephenmcd

• Fix inline editing for file uploads - stephenmcd

• Give each inline editable form field a unique ID to allow multiple TinyMCE editors to work correctly - stephen-
mcd

• add csrf_token to form for inline editing (django 1.2 fails without this.) - lexual

• admin now contains link back to site - lexual

1.17. Colophon 133

Mezzanine,

• Move site link in admin to user-tools panel - stephenmcd

• move toolbar for editable inline to the right hand side - lexual

• Backed out changeset 50aa6171231d - lexual

• move inline editable toolbar to top right - lexual

• Make number of comments for a BlogPost available via BlogPostManager - stephenmcd

• Add mezzanine.utils.admin_url which handles reversing different admin URLs. Also rename
admin_url template tag to try_url to better reflect its purpose - stephenmcd

• Add a (yet to be used) SingletonAdmin class for creating admin classes that manage models with a single
instance - stephenmcd

• Clean up the dynamic inline hooks Django uses that get left behind by using Grappelli’s inline template -
stephenmcd

• Remove redundant reference to jquery - stephenmcd

• Different approach to cleaning up __prefix__ templates from inlines - just remove them - stephenmcd

• Hide the unwanted add link - stephenmcd

• Fix admin menu - stephenmcd

• admin_app_list template tag bugfix - lexual

• make inline editable forms pretty - lexual

• Backed out changeset: 7a1d5a321032 - stephenmcd

• Removed tag git/git/master - stephenmcd

• Add support for custom navigation items in ADMIN_MENU_ORDER and configure filebrowser as an item
- stephenmcd

• Add docs for custom navigation items in admin - stephenmcd

• Add Wordpress support to blog importer - ajfisher

• Added importer with command line option - ajfisher

• 1. Some changes to the importer module in order to clean up. 2. Implementation of framework to use tumblr
in importer module. 3. Addition of new tumblr module, adapting from @stephenmcd ‘s previous work but
extending it to work into new importer framework - ajfisher

• Catch DatabaseError instead of trying to check for syncdb when reading DB settings to allow for other DB
management related commands to run such as south - stephenmcd

• Rename mezzanine.settings to mezzanine.conf - stephenmcd

• Make the DatabaseError import compatible with Django 1.1 - stephenmcd

• Put fixtures into a potentially more stable order - stephenmcd

• Update the admin menu with the new conf name - stephenmcd

• fixed some code logic to enumerate more cleanly and removed the testing 5 item max results - ajfisher

• modified to include tries on the feedparser import and exit gracefully if not. Also cleaned up some enumeration
stuff and making the tags code into a list comprehension - ajfisher

• added some graceful exit handling if the gdata library isn’t available - ajfisher

• streamlined tag stuff to use a list comprehension - ajfisher

134 Chapter 1. Table Of Contents

Mezzanine,

• Replace the approach of calling mezzanine.conf.load_settings to create new instances of settings
objects with a single instance via mezzanine.conf.settings that contains a method use_editable
which when called will mark the settings object for reloading settings from the db - stephenmcd

• Refactor settings loading to reload settings when use_editable called - stephenmcd

• Remove unused func editable_settings - stephenmcd

• Explicitly evaluate the results for blog template tags so that queries are only executed once - stephenmcd

• Replace load_settings template tag with a context processor for a global settings object - stephenmcd

• Remove the SETTINGS_EDITABLE setting and check for mezzanine.conf in installed apps - stephenmcd

• Remove the MEZZANINE_ prefix from checking project’s settings for default values, since non-mezzanine apps
may register settings themselves - stephenmcd

• Group the form fields for editable settings by prefix - stephenmcd

• Update documentation to reflect refactoring of the conf app - stephenmcd

• Comment fixes - stephenmcd

• Allow the BlogCategoryAdmin to be displayed in the admin menu when explicitly defined in
ADMIN_MENU_ORDER - stephenmcd

Version 0.8.4 (Oct 01, 2010)

• Fix PostgreSQL error on tweet lookup - stephenmcd

• Use dynamically generated intro for posts in blog listing page rather than the description field - stephenmcd

Version 0.8.3 (Sep 30, 2010)

• Workaround for when mezzanine is hosted under a different urlspace. (Only tested with Django admin, not
grappelli). The keywords.js file needs to reference a mezzanine URL, from the admin site. It used to use a
hard-coded string with a root-absolute path, but this failed when mezzanine was hosted elsewhere. Instead, we
now reference a global Mezzanine JS object, which is set by template, using URL reversal to find the correct
url. This requires a reworking in how the PageAdmin object accesses its Media settings - previously the list of
js files was calculated at module load time, but at this stage the url reversal mechanism won’t work, because the
urls.py aren’t all loaded yet, Instead, we hide the list generation inside a lazy iterator object and create the
list on demand - Toby White

• Fix admin menu for earlier than Python 2.6 which lacks tuple.index - stephenmcd

• add active class to footer menu - lexual

• Don’t fail if PACKAGE_NAME_FILEBROWSER or PACKAGE_NAME_GRAPELLI aren’t set - just don’t try &
load them - Toby White

• Fix grappelli/filebrowser package creation scripts to be Python 2.5 compatible. Closes #12 - stephenmcd

• Create a template tag for reversing urls from within admin templates that fail silently when the url can’t be
reversed, as this is always the case when running admin tests. Apply this to both the admin dropdown menu and
to the base admin template making all templates aware of the admin_keyword_submit URL so that it does
not need to be hard-coded - stephenmcd

• Backed out changeset: d43f3e430d1f - stephenmcd

1.17. Colophon 135

Mezzanine,

• Replace MobileTemplate middleware with a decorator. If mezzanine is being used as an application within
another project, then the MobileTemplate middleware may not be appropriate to use on URLs outside of mezza-
nine’s control. In fact, if the project uses other calling conventions (eg class-based views) then the middleware
may fail completely - Toby White

• Fix positioning of admin dropdown menu in Firefox. Closes #11 - stephenmcd

• Remove stray pdb - Toby White

• Let the location of the tinymce scripts be overridden - Toby White

• Give the Page object a get_admin_url property, which we can use to provide direct links to a Page’s admin
page from the editable toolbar - Toby White

• add id’s to tree-menu, fix bug with multiple “first” class being set - lexual

• Add a filtering form for exporting responses in the forms app - stephenmcd

• Add branch_level and html_id attributes to pages in menu template tags - stephenmcd

• Add TEST_DATABASE_COLLATION for MySQL - stephenmcd

• Fix field length of test data - stephenmcd

• Remove trailing commas from tinymce_setup.js that break IE. Fixes #14 - stephenmcd

Version 0.8.2 (Sep 24, 2010)

• Backed out changeset 0e7907eef4fc - lexual

• move editable-loader to bottom of template to fix weird webkit layout bug - lexual

• 960 stuff into separate files - lexual

• custom css in separate files - lexual

• Modify absolute ADMIN_MEDIA_PREFIX value when using grappelli to read in ip/port from sys.argv -
stephenmcd

• Clean up a bunch of dead code. Fixes #10 - stephenmcd

• Allow overriding CONTENT_MEDIA_URL - Toby White

• Test for existence of TinyMCE before using it in JS - Toby White

• Fix missing quotes for CONTENT_MEDIA_URL setting - stephenmcd

• Type in setting function - stephenmcd

• Fix handling of empty field values in forms app by not saving them - stephenmcd

Version 0.8.1 (Sep 20, 2010)

• No changes listed.

Version 0.8 (Sep 19, 2010)

• Allow search fields for SearchableManager to be defined across multiple models in an inheritance chain -
stephenmcd

136 Chapter 1. Table Of Contents

Mezzanine,

• Refactor models to remove the content field from the pages.Page model (and therefore the
core.Displayable model from which it inherits) so that custom content types can be created without
the content field. Introduces a new default content type pages.ContentPage - stephenmcd

• Remove BLOG_TITLE and BLOG_DESCRIPTION from mezzanine.settings and replace use of these
with the title and description of the blog page from the pages app allowing them to be in-line editable - stephen-
mcd

• Separate dynamic inlines into its own js file - stephenmcd

• Make class name unique for dynamic inlines - stephenmcd

• Fixed a bug with the stripping of comment dates - ajfisher

• Added comment migration to the post importing. Have disabled keywords /. tags for the moment due to an error
from refactoring - ajfisher

• added some exception handling to start cleaning up things ready for. the proper management command set up -
ajfisher

• removed some of my testing params and made them generic - ajfisher

• Fix with statement for Python2.5 in setup.py. Closes #9 - stephenmcd

• Refactor ordering and dynamic “Add another” enhancements to admin inlines so that they explicitly target the
correct inlines - stephenmcd

• Move scripts into scripts directory and use OptionParser in mezzanine-project script to allow options for copying
templates, package source and specifying an alternate package to install from - stephenmcd

• Fix logic of checking a page’s slug to be selected in page_menu template tag - stephenmcd

• Remove the list of apps/models from the admin dashboard and move them into a navigation menu persistent
throughout the entire admin - stephenmcd

• Trap failure to resolve admin URLs so that tests can pass - stephenmcd

• Set mezzanine.core.admin.DynamicInlineAdmin.extra to 20 unconditionally - stephenmcd

• Try and check for jQuery before loading it for admin menu - stephenmcd

• Fix styling of messages to prevent them being layered on top of the admin menu - stephenmcd

• Update auto-generated settings docs - stephenmcd

Version 0.7.4 (Sep 11, 2010)

• Use ADMIN_MEDIA_PREFIX in path to TinyMCE js. Closes #6 - stephenmcd

• Refactor generation of Displayable.description to not explicitly use content field - stephenmcd

• Fix sequence of styling for selected nav in tree menu - stephenmcd

• Let blog views render even if the blog page object doesn’t exist - stephenmcd

• Add a test for generated page descriptions - stephenmcd

• Allow test for overriden pages to pass when blog page doesn’t exist - stephenmcd

• fix up footer positioning - lexual

• Fix field length for field types in forms app - stephenmcd

• Update mezzanine-project script to copy templates into newly created project - stephenmcd

• Fix missing enctype in forms template for forms with file uploads - stephenmcd

1.17. Colophon 137

Mezzanine,

• Add a new help_text field to form field model in forms app - stephenmcd

• Add email_subject and email_message fields to form model in forms app - stephenmcd

• Fix pages.page_processors.processor_for to return the function it decorates so they can be refer-
enced from their modules for documentation purposes - stephenmcd

• Fix docs in mezzanine.utils - stephenmcd

• Add mezzanine.forms to package docs - stephenmcd

Version 0.7.3 (Sep 03, 2010)

• Alignment fixes to the footer menu - stephenmcd

Version 0.7.2 (Sep 03, 2010)

• Refactor mezzanine.template to use functools.wraps - stephenmcd

• Move local_settings module into a template - stephenmcd

• Align TinyMCE width with other admin fields - stephenmcd

• Refactor slug creation functionality out of Displayable model into Slugged model - stephenmcd

• Add BlogCategory model and associated functionality - stephenmcd

• Added BooleanField in_navigation and in_footer to Page model to allow for controlling navigation
placement of pages - stephenmcd

• Bugfix to slug fields - change to CharField to allow slashes - stephenmcd

• Better styling for the footer nav - stephenmcd

• Add a primary attrib for page objects in menu templates - stephenmcd

• More styling enhancements to footer menu - stephenmcd

• Add new fixtures for demonstrating footer menu - stephenmcd

Version 0.7.1 (Aug 30, 2010)

• Bugfix to mobile middleware for view functions without keyword args - stephenmcd

Version 0.7 (Aug 30, 2010)

• Integrate 960.gs CSS framework into default templates - stephenmcd

Version 0.6.4 (Aug 29, 2010)

• Backed out changeset: 8dac998c6f0c - stephenmcd

• Add expiry_date field to DisplayableAdmin - stephenmcd

• Change if tags in breadcrumbs and toplevel_menu templates to be Django 1.1 compatible, and to use the
page.selected attribute rather than template_utils lib, allowing it to be removed from pages_tags
- stephenmcd

138 Chapter 1. Table Of Contents

Mezzanine,

• Use consistant naming for each type of page menu and include all types of page menus in default templates -
stephenmcd

• Create a custom breadcrumb menu for blog posts - stephenmcd

• Replace the setting tag with a load_settings tag that takes a list of setting names and injects them into
the template context - stephenmcd

• Bugfix template tag name for admin page menu - stephenmcd

Version 0.6.3 (Aug 26, 2010)

• Bugfix login redirect to be compatible with Django 1.2 - stephenmcd

Version 0.6.2 (Aug 26, 2010)

• More error handling to CHANGELOG generator - ensure hg repo also exists - stephenmcd

• Add a button_text field to forms model for editing the text of the form’s submit button - stephenmcd

• Bugfix to forms button text - stephenmcd

• Add new field Displayable.expiry_date and relevant handling in
PublishedManager.published - stephenmcd

• Add field for default values in forms app and new field types: Check boxes, Radio buttons, Hidden - stephenmcd

• Add login_required field to page model for restricting pages to authenticated users - stephenmcd

Version 0.6.1 (Aug 23, 2010)

• Update to Mezzanine 0.6 - VanL

• Update pages_tags to include comparisons and toplevel/breadcrumbs tags; added associated templates -
VanL

• Set TIME_ZONE to use the system timezone - stephenmcd

• Change CHANGELOG generator to fail silently when mercurial isn’t installed - stephenmcd

Version 0.6 (Aug 09, 2010)

• Bugfix to mobile template test to allow for no template inheritance - stephenmcd

• Initial import of django-forms-builder - stephenmcd

• Bugfix to DisplayableAdmin.search_fields - stephenmcd

• Bugfix to orderable_inline.js to correctly detect dirty checkboxes - stephenmcd

• Move mezzanine.core.models.HtmlField to new module mezzanine.core.fields - stephen-
mcd

• Allow model/field passed to editable templatetag to contain extra dot notation - stephenmcd

• Convert forms_builder app to a Mezzanine content type - stephenmcd

• Extend admin definitions from inherited admin classes for FormAdmin - stephenmcd

• Bugfix for generating slugs with parent pages for subclasses of Page - stephenmcd

1.17. Colophon 139

Mezzanine,

• Commented mezzanine.forms.admin - stephenmcd

• Initial commit of the importer code for blogger. Comprises the baseline generic importer code for mezz that will
be used by all input types and the baseline processor for blogger. 0.1 - ajfisher

• Updated sequence of classes in documentation to run correctly - thanks Nick Hagianis for picking this up -
stephenmcd

• Handful of patches to correct bugs around creating slugs, titles and ordering for pages and their subclasses -
stephenmcd

• Add a contact form to fixtures - stephenmcd

• Added built-in styling to form fields in forms app - stephenmcd

• unnecessary imports removed ? - lexual

• Added missing line in docs for in-line editing example - stephenmcd

• Remove natural keys from fixtures for Django 1.1 compatibility - stephenmcd

Version 0.5.4 (Jul 25, 2010)

• Bugfix to in-line editing view - missing import - stephenmcd

• Moved setting of class attribute for TinyMCE into HtmlField - stephenmcd

• Added loading animation to in-line editing - stephenmcd

Version 0.5.3 (Jul 24, 2010)

• Use names of packages from settings in setup script - stephenmcd

• Make changelog generator in Sphinx conf list changesets within a version in chronological order - stephenmcd

• Update CSS for in-line editing toolbar to stay fixed at top of the page - stephenmcd

• Added handling for models to define their own editable method for controlling in-line editing - stephenmcd

• Added the abstract model Ownable for defining models with instances owned by users, containing
is_editable hook and admin class for setting the owner of new objects and restricting objects to their
owners - stephenmcd

• Apply Ownable abstract model to BlogPost model and related classes - stephenmcd

• Wrap quickblog form in permission check - stephenmcd

Version 0.5.2 (Jul 22, 2010)

• Allow interface selection on admin login screen to prepopulate from querystring - stephenmcd

• spelling fixed in docs - lexual

• Added more backward-compatible csrf handling - stephenmcd

• Added more robust handling for csrf and apply to forms - stephenmcd

• Bugfix setting author of blog post in BlogPostAdmin to be compatible with DisplayableAdmin - stephenmcd

140 Chapter 1. Table Of Contents

Mezzanine,

Version 0.5.1 (Jul 18, 2010)

• Bugfix to permission check for in-line editing - stephenmcd

• Bugfix to persist values for in-line TinyMCE fields - stephenmcd

• Created HtmlField and TinyMceWidget for more control over targetting textareas as TinyMCE fields - stephen-
mcd

• Bugfix to TinyMceWidget name - stephenmcd

• Include Csrf Middleware when available - stephenmcd

Version 0.5 (Jul 18, 2010)

• Added ‘Posted by’ text to blog posts - stephenmcd

• Fixed grammar error in docs - stephenmcd

• Added routine to Sphinx conf to auto-generate changelog from mercurial repo - stephenmcd

• Change admin title to Mezzanine - stephenmcd

• Make slugs editable in admin - stephenmcd

• Bugfix links to RSS feeds - stephenmcd

• Update to_end_tag with context and token args, but only use as many args as the tag supports - stephenmcd

• Created system for inline-editing - stephenmcd

• Apply in-line editing to templates - stephenmcd

• Add option to admin login screen to log into site for in-line editing - stephenmcd

• Added docs for in-line editing - stephenmcd

Version 0.4 (Jul 11, 2010)

• Added search functionality and moved pagination out into utils and templatetags - stephenmcd

• Remove weight from search results output - stephenmcd

• A bunch of updates to doc strings - stephenmcd

• Added documentation for search API - stephenmcd

• Added highlighting to blog post author’s own comments - stephenmcd

• Save blog commenter’s details in a cookie - stephenmcd

• Bugfix to links in recent comments section of admin dashboard - stephenmcd

Version 0.3.5 (Jul 09, 2010)

• Bugfix to page template missing tag library - stephenmcd

• Bugfix to tests loading and version bump - stephenmcd

1.17. Colophon 141

Mezzanine,

Version 0.3.4 (Jul 08, 2010)

• Add blog migration to feature list - stephenmcd

• Added support for natural keys - stephenmcd

• Bugfix to natural key format - stephenmcd

• Cleaned up interface for custom tag types - stephenmcd

• Update docs with references to new modules and version bump - stephenmcd

Version 0.3.3 (Jul 07, 2010)

• No changes listed.

Version 0.3.2 (Jul 07, 2010)

• Reformatted docs to lines less than 80 chars - stephenmcd

• Revert some of mezzanine.settings back to not being overridable - stephenmcd

• Added routine to sphinx conf.py to auto-generate docs for mezzanine.settings - stephenmcd

• Prevent sphinx blank-line warning - stephenmcd

• Make building docs Python2.5 compatible - stephenmcd

• Bugfix for losing parent ID when editing existing child pages - stephenmcd

• fix bug with ordering field in pages. Add error handling for page ordering - lexual

Version 0.3.1 (Jul 05, 2010)

• Fixed some spelling mistakes throughout docs - stephenmcd

• Bugfix to unique slug generation method - stephenmcd

• Added redirects app to default settings - stephenmcd

• Added management command to blog app for migrating a Tumblr blog - stephenmcd

• Allow members of mezzanine.settings to be defined in the project’s settings module prefixed with MEZ-
ZANINE_ - stephenmcd

Version 0.3.0 (Jul 04, 2010)

• Bugfix to template lookup for custom content model - stephenmcd

• Added page processor system for manipulating context and response per page type - stephenmcd

• Added docs for page processors and bumped version - stephenmcd

142 Chapter 1. Table Of Contents

Mezzanine,

Version 0.2.4 (Jul 02, 2010)

• Add warning to mezzanine_project script to prevent the user from creating a project name that conflicts
with an existing package or module - stephenmcd

• Make maintain_parent private - stephenmcd

• fix mezzanine_project.py handling –options or multiple arguments - lexual

• project_name variable instead of continual using sys.argv[1] - lexual

• make proj name start with “-” illegal and print usage - lexual

Version 0.2.3 (Jun 30, 2010)

• added content_model to json - lexual

• Bugfix to dynamic admin inlines - stephenmcd

Version 0.2.2 (Jun 27, 2010)

• No changes listed.

Version 0.2.1 (Jun 27, 2010)

• Added more documentation around extending pages - stephenmcd

• Update fixtures with new name for ordering field - stephenmcd

• Added notes about contributing with links to github and bitbucket repos - stephenmcd

• Fixes to Mezzanine’s sphinx theme - stephenmcd

• Added initial layout template for docs with GA code - stephenmcd

• Bugfix to template loading in page view - stephenmcd

Version 0.2 (Jun 27, 2010)

• Reintroduce local_settings module - stephenmcd

• Reinstate required ordering for correct admin template loading - stephenmcd

• Use models.permalink decorator - stephenmcd

• Fixed incorrect project name in license - stephenmcd

• Created framework for inheriting from Page model to create custom content types for pages, and added new
abstract model Orderable for managing orderable models - stephenmcd

• Initial version of documentation - stephenmcd

• Bugfix to submit overriding for keyword field - stephenmcd

1.17. Colophon 143

Mezzanine,

Version 0.1.4 (Jun 15, 2010)

• Switch out filebrowser to use a custom version as done with grappelli - correctly packaged and Django 1.1
compatible - stephenmcd

• Add script for generating fork of filebrowser - stephenmcd

• Simplify structure for optionally installed apps and exclude all optional apps from testing - stephenmcd

• In mobile middleware, don’t assume user-agent exists since the test client doesn’t use one - stephenmcd

• Bugfix to mobile middleware - missing imports - stephenmcd

• Made comments IP address nullable - stephenmcd

• Use url tags in templates instead of get_absolute_url - stephenmcd

• Don’t assume request is in context in inclusion tags - stephenmcd

• Added error templates and example mobile template for homepage - stephenmcd

• Added test suite and version bump - stephenmcd

Version 0.1.3 (Jun 14, 2010)

• Moved the blog landing page’s slug into a setting - stephenmcd

• CSS updates - stephenmcd

• Add homepage to menu - stephenmcd

• Update to layout of sharing panel - stephenmcd

• Bugfix to AJAX submit for admin keywords field - stephenmcd

• Added a dynamically set “selected” attribute for pages rendered in the page menu - stephenmcd

• Bugfix to tweets for search terms - missing profile image and invalid date format - stephenmcd

• Bugfix to tweets - invalid import - stephenmcd

• Added demo twitter feed - stephenmcd

• Bugfix to blog view - old variable name - stephenmcd

• Added username fallback for displaying author’s name for list of blog posts - stephenmcd

• Added “powered by” copy - stephenmcd

• Added setting GOOGLE_ANALYTICS_ID for integrating Google Analytics - stephenmcd

• Added setting PAGES_MENU_SHOW_ALL to control whether all levels in page menu are shown by default -
stephenmcd

• Changed manual file exclusion in setuptools script to maintain owner and permissions - stephenmcd

Version 0.1.2 (Jun 11, 2010)

• Remove local settings module from repo and packaging - stephenmcd

• Actual local_settings module removal - stephenmcd

144 Chapter 1. Table Of Contents

Mezzanine,

Version 0.1.1 (Jun 11, 2010)

• No changes listed.

Version 0.1 (Jun 10, 2010)

• Original import - stephenmcd

1.17. Colophon 145

	Table Of Contents
	Overview
	Content Architecture
	Model Customization
	Admin Customization
	Utilities
	Model Graph
	Device Handling
	In-line Editing
	Caching Strategy
	Deployment
	Frequently Asked Questions
	Public User Accounts
	Search Engine
	Configuration
	Importing External Blogs
	Packages
	Colophon

